Acknowledgement
This work was supported by the Dongnam Institute of Radiological & Medical Sciences (DIRAMS) grant funded by the Korea government (MSIT) (No.50491-2023).
References
- IAEA, Use of Electron Paramagnetic Resonance Dosimetry with Tooth Enamel for Retrospective Dose Assessment, International Arts and Entertainment Alliance, Vienna, 2002. IAEA-TECDOC-1331.
- F.C.M. Driessens, R.M.H. Verbeeck, Biominerals, CRC Press, Boca Raton, Ann Arbor, Boston, 1990, p. 428.
- L.M. de Oliveira, E.F. de Jesus, A.M. Rossi, R.T. Lopes, L.N. Rodrigues, R. A. Barbosa, Energy dependence of EPR signal in synthetic and biological hydroxyapatite irradiated with photons, Radiat. Protect. Dosim. 84 (1999) 511-514, https://doi.org/10.1093/oxfordjournals.rpd.a032789.
- I.P. Vorona, S.S. Ishchenko, N.P. Baran, T.L. Petrenko, V.V. Rudko, Evidence of annealing-induced transformation of CO2- radicals in irradiated tooth enamel, Radiat. Meas. 41 (2006) 577-581, https://doi.org/10.1016/j.radmeas.2005.12.002.
- D.U. Schramm, A.M. Rossi, Electron spin resonance (ESR) studies of CO2- radicals in irradiated A and B-type carbonate-containing apatites, Appl. Radiat. Isot. 52 (2000) 1085-1091, https://doi.org/10.1016/s0969-8043(00)00046-4.
- Y. Liu, et al., Study of new practical ESR dosimeter based on carbonated hydroxyapatite and its dosimetric properties, PLoS One 13 (2018), e0197953, https://doi.org/10.1371/journal.pone.0197953.
- J.A.F. Gamelas, A.G. Martins, Surface properties of carbonated and non-carbonated hydroxyapatites obtained after bone calcination at different temperatures, Colloids Surf. A Physicochem. Eng. Aspects. 478 (Supplement c) (2015) 62-70, https://doi.org/10.1016/j.colsurfa.2015.03.044.
- N. Hajiloo, F. Ziaie, S.I. Mehtieva, Gamma-irradiated EPR response of nanostructure hydroxyapatite synthesised via hydrolysis method, Radiat. Protect. Dosim. 148 (2012) 487-491, https://doi.org/10.1093/rpd/ncr204.
- B. Baghalzadeh, F. Ziaie, F. Dowlatshah, M. Larijani, Gamma irradiated electron paramagnetic resonance response of carbonate ion implanted hydroxyapatite, Nucl. Technol. Radiat. 28 (2013) 260-264. https://doi.org/10.2298/NTRP1303260B
- B.R. Park, et al., The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea, Nucl. Eng. Technol. 52 (2020) 2379-2386, https://doi.org/10.1016/j.net.2020.03.025.
- ISO/ASTM, Standard Practice for Calibration of Routine Dosimetry Systems for Radiation Processing, 2013. ASTM Standard 51261.
- M.E. Zorn, R.D. Gibbons, W.C. Sonzogni, Weighted least-squares approach to calculating limits of detection and quantification by modeling variability as a function of concentration, Anal. Chem. 69 (1997) 3069-3075, https://doi.org/10.1021/ac970082i.
- ISO, International organization for standardization, in: Standard ISO 11929-7 Determination of the Detection Limit and Decision Threshold for Ionizing Radiation Measurements-Part 7. Fundamentals and General Applications, 1998.
- P. Fattibene, et al., The 4th international comparison on EPR dosimetry with tooth enamel, Radiat. Meas. 46 (2011) 765-771, https://doi.org/10.1016/j.radmeas.2011.05.001.
- L.A. Currie, Detection and quantification limits: basic concepts, international harmonization, and outstanding ('low-level') issues, Appl. Radiat. Isot. 61 (2004) 145-149, https://doi.org/10.1016/j.apradiso.2004.03.036.
- ISO, Radiological Protection-Minimum Criteria for Electron Paramagnetic Resonance (EPR) Spectroscopy for Retrospective Dosimetry of Ionizing Radiation-Part 1: General Principles ISO 13304, 2020.
- ISO/ASTMStatistical Methods for Use in Proficiency Testing by Inter Laboratory Comparison 3528, 2015.
- Joint Committee for Guides, in: Metrology (JCGM) International Vocabulary of Metrology-Basic and General Concepts and Associated Terms (VIM); Technical Report, JCGM, Sevres, France, 2012, p. 200.
- International Organization for Standardization (ISO), Conformity Assessment General Requirements for Proficiency Testing, ISO/IEC, 2010, 17043.