참고문헌
- T.T. Calam, ''Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples,'', Int. J. Environ. Anal. Chem. 99 (13) (2019) 1298-1312. https://doi.org/10.1080/03067319.2019.1619716
- T.T. Calam, Electrochemical oxidative determination and electrochemical behavior of 4-nitrophenol based on an Au electrode modified with electro-polymerized 3, 5-diamino-1, 2, 4-triazole film, Electroanalysis 32 (1) (2020) 149-158. https://doi.org/10.1002/elan.201900450
- M.T. Balta, I. Dincer, A. Hepbasli, Comparative assessment of various chlorine family thermochemical cycles for hydrogen production, Int. J. Hydrogen Energy 41 (19) (2016) 7802-7813. https://doi.org/10.1016/j.ijhydene.2015.12.222
- S. Asal, M. Ozkaya, A. Acir, A study of hydrogen production by using SMR, S-I and HTE methods in a PACER fusion concept based on thorium molten salt fuel, Fuel 333 (2) (2023), 126602.
- D. Baldwin, M. Campbell, C. Ellis, M. Richards, A. Shenoy, MHR desing, technology and applictions, Energy Convers. Manag. 49 (7) (2008) 1898-1901. https://doi.org/10.1016/j.enconman.2007.07.048
- S.T. Revankar, Transient analysis of coupled high temperature nuclear reactor to a thermochemical hydrogen plant, Int. J. Hydrogen Energy 38 (14) (2013) 6174-6181. https://doi.org/10.1016/j.ijhydene.2013.01.114
- L.C. Juarez-Martinez, G. Espinosa-Paredes, A. Vazquez-Rodriguez, H. Romero-Paredes, Energy optimization of a Sulfure -Iodine thermochemical nuclear hydrogen production cycle, Nucl. Eng. Technol. 53 (6) (2021) 2066-2073. https://doi.org/10.1016/j.net.2020.12.014
- R. Elder, R. Allen, Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant, Prog. Nucl. Energy 51 (3) (2009) 500-525. https://doi.org/10.1016/j.pnucene.2008.11.001
- C. Canavesio, H. Nassini E, A.E. Boh'e, Evaluation of an iron-chlorine thermochemical cycle for hydrogen production, Int. J. Hydrogen Energy 40 (28) (2015) 8620-8632. https://doi.org/10.1016/j.ijhydene.2015.04.158
- Safari F. ve Dincer ˙ I, A study on the Fe-Cl thermochemical water splitting cycle for hydrogen production, Int. J. Hydrogen Energy 45 (38) (2020) 18867-18875. https://doi.org/10.1016/j.ijhydene.2020.04.208
- M. Lewis, J.G. Masin, The evaluation of alternative thermochemical cycles - Part II: the down-selection process, Int. J. Hydrogen Energy 34 (9) (2009) 4125-4135O.
- S. Asal, A. Acir, A study on nuclear hydrogen production using a novel approach cobalt-chlorine thermochemical cycle in a laser driver fission fusion blanket for various molten salt fuels, Prog. Nucl. Energy 153 (2022), 104443.
- S. Asal, A. Acir, Utilization of the Cu-Cl thermochemical cycle for hydrogen production using a laser driver thorium molten salts, Int. J. Hydrogen Energy 46 (61) (2021) 31133-31142. https://doi.org/10.1016/j.ijhydene.2021.07.031
- O. Oruc, I. Dincer, Assessing the potential of thermo-chemical water splitting cycles: a bridge towards clean and sustainable hydrogen generation, Fuel 286 (2) (2021), 119325.
- A.E. Karaca, A.M.M.I. Qureshy, I. Dincer, '' an overview and critical assessment of thermochemical hydrogen production methods,'', J. Clean. Prod. 385 (20) (2023), 135706.
- A. Acir, S. Asal, Investigation of the hydrogen production of a laser FUSION driver thorium breeder using various coolants, Int. J. Hydrogen Energy 46 (10) (2021) 7087-7098. https://doi.org/10.1016/j.ijhydene.2020.11.209
- A. Acir, S. Akti, Investigation of hydrogen production potential of the LASER inertial confinement fusion fission energy (LIFE) engine, Int. J. Hydrogen Energy 44 (45) (2019) 24867-24879. https://doi.org/10.1016/j.ijhydene.2019.07.151
- R.A. Adewale, A.S. Berrouk, S. Dara, A process simulation study of hydrogen and sulfur production from hydrogen sulfide using the Fe-Cl hybrid process, J. Taiwan Inst. Chem. Eng. 54 (2015) 20-27. https://doi.org/10.1016/j.jtice.2015.03.018
- G. Ozisik, N. Demir, M. ubeyli, H. Yapici, Hydrogen production via water splitting process in a molten-salt fusion breeder, Int. J. Hydrogen Energy 35 (14) (2010) 7357-7368. https://doi.org/10.1016/j.ijhydene.2010.04.171
- N. Demir, Hydrogen production via steam-methane reforming in a SOMBRERO fusion breeder with ceramic fuel particles, Int. J. Hydrogen Energy 38 (2) (2013) 853-860. https://doi.org/10.1016/j.ijhydene.2012.10.077
- G. Genc, Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride, Int. J. Hydrogen Energy 35 (19) (2010) 10190-10201. https://doi.org/10.1016/j.ijhydene.2010.07.134
- R.W. Moir, Pacer revisited, Nucl. Sci. Eng. 104 (April) (1990) 364-373. https://doi.org/10.13182/NSE90-A23734
- A. Szoke, R.W. Moir, A realistic, gradual and economical approach to fusion power, Fusion Technol. 20 (1991) 1012.
- S. Sahin, R.W. Moir, S. unalan, "Neutronic investigation of a power plant using peaceful nuclear explosives, Fusion Technol. 26 (4) (1994) 1311-1325. https://doi.org/10.13182/FST94-A30316
- S. Sahin, S. Yalcin, K. Yildiz, Fissile fuel breeding with peaceful nuclear explosives, Fusion Eng. Des. 65 (2003) 643-656. https://doi.org/10.1016/S0920-3796(03)00397-1
- J.F. Briesmeister, A General Monte Carlo N-Particle Transport Code, LA-13709M, Los Alamos National Laboratory, MCNP, 2000.
- S. Sahin, H.M. Sahin, A. Acir, LIFE hybrid reactor as reactor grade plutonium burner, Energy Convers. Manag. 63 (2012) 44-50. https://doi.org/10.1016/j.enconman.2011.12.031
- A. Acir, Neutronic analysis of the laser inertial confinement fusion-fission energy (LIFE) engine using various thorium molten salts, J. Fusion Energy 32 (6) (2013) 634-641. https://doi.org/10.1007/s10894-013-9628-7
- S. Sahin, B. Sarer, Y. Celik, Neutronic investigations of a laser fusion driven lithium cooled thorium breeder, Prog. Nucl. Energy 73 (2014) 188-196. https://doi.org/10.1016/j.pnucene.2014.02.001
- A. Acir, E. Baysal, Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine, Plasma Sci. Technol. 20 (7) (2018).
- Web site, NIST Chemistry WebBook, 2018. http://webbook.nist.gov/chemistry/;.
- Y. Cengel, M. Boles, In: Thermodynamics an Engineering Approach, 2012.
- Scientific Group Thermodata Europe (SGTE), Compounds from CoCl3 to Ge3N4, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology - New Series / Physical Chemistry 19 (9) (2000).