DOI QR코드

DOI QR Code

Study of contact melting of plate bundles by molten material in severe reactor accidents

  • J.J. Ma (College of Nuclear Science and Technology, Naval University of Engineering) ;
  • W.Z. Chen (College of Nuclear Science and Technology, Naval University of Engineering) ;
  • H.G. Xiao (College of Nuclear Science and Technology, Naval University of Engineering)
  • Received : 2022.10.21
  • Accepted : 2023.08.02
  • Published : 2023.11.25

Abstract

In a severe reactor accident, a crust will form on the surface of the molten material during the core melting process. The crust will have a contact melting with the internal components of the reactor. In this paper, the contact melting process of the molten material on the austenitic stainless steel plate bundles is studied. The contact melting model of parabolic molten material on the plate bundles is proposed, and the rule and main effect factors of the contact melting are analyzed. The results show that the melting velocity is proportional to the slope of the paraboloid, the heat flux and the distance between two plates D. The influence of melt gravity and the plate width on melting velocity is negligible. The thickness of the molten liquid film is proportional to the heat flux and plate width, and it is inversely proportional to the gravity. With the increase of D, the liquid film thickness decreases at first and then increases gradually. The liquid film thickness has a minimum against D. When the width of the plate is small, the width of the plate is the main factor affecting the thickness of the liquid film. The parameters are coupled with each other. In a severe reactor accident, the wider internal components of reactor, which can increase the thickness of the melting liquid film and reduce the net input heat flux from the molten material to the components, are the effective measures to delay the melting process.

Keywords

Acknowledgement

This research was financially supported by the National Natural Science Foundation of China (project number 12175311).

References

  1. R.R. Hobbins, D.A. Petti, D.J. Osetek, D.L. Hagrman, Review of experimental results on light water reactor core melt progression, Nucl. Technol. 95 (3) (1991) 287-307.
  2. W.C. Muller, Review of debris bed cooling in the TMI-2 accident, Nucl. Eng. Des. 236 (2006) (2006) 1965-1975.
  3. X. Li, I. Sato, A. Yamaji, Sensitivity analysis of in-vessel accident progression behavior in Fukushima Daiichi nuclear power plant unit 3, Ann. Nucl. Energy 133 (2019) 21-34.
  4. S. Ding, H.F. Huang, R.H. Zhong, X.Y. Zhang, D.K. Zhan, Numerical Analysis of movement and heat transfer of melting material in PWR core, At. Energy Sci. Technol. 1 (2020) (2020) 44 (in Chinese) 54.
  5. F. Fichot, J.M. Bonnet, B. Chaumont, IRSN views and perspectives on in-vessel melt retention strategy for severe accident mitigation, EUROSAFE Forum, Brussels, Nov (2015) 2-3.
  6. Z.H. Guan, Q.A. Xiang, B. Chen, H.X. Yu, Probability analysis for effectiveness of IVR strategy during severe accidents for ACP1000 through ROAAM, Nucl. Power Eng. 6 (2015) 56-60 (in Chinese) 36.
  7. L.Q. Hou, D.H. Zhu, Q. Wu, Y.Z. Liu, Z.D. Liu, H.T. Zheng, Research of behavior of the core shroud and barrel during a severe accident, Nucl. Sci. Eng. 5 (2020) 827-835 (in Chinese) 40.
  8. W.Z. Chen, Analysis of Contact Melting, Chinese Atomic Energy Press, Beijing, 2022 (in Chinese).
  9. V. Cregan, J. Williams, T.G. Myers, Contact melting of a rectangular block with temperature-dependent properties, Int. J. Therm. Sci. 150 (2020), 106218.
  10. H. Nan, Z.R. Li, Z.W. Xu, L.W. Fan, Rapid charging for latent heat thermal energy storage: a state-of-the-art review of close-contact melting, Renewable Sustainable Energy Rev. 155 (2022), 111918.
  11. S.H. Emerman, D.L. Turcotte, Stokes's problem with melting, Int. J. Heat Mass Tran. 26 (11) (1983) 1625-1630.
  12. M.K. Moallemi, R. Viskanta, Analysis of melting around a moving heat source, Int. J. Heat Mass Tran. 29 (8) (1986) 1271-1282.
  13. W.Z. Chen, J.L. Hao, Z.Y. Chen, A study of self-burial of a radioactive waste container by deep rock melting, Sci. Technol. Nucl. Install (2013), https://doi.org/10.1155/2013/184757.
  14. P.A. Litsek, A. Bejan, Sliding contact melting: the effect of heat transfer in the solid parts, J. Heat Tran. 112 (1990) 808-812.
  15. A.J. Fowler, A. Bejan, Contact melting during sliding on ice, Int. J. Heat Mass Tran. 36 (5) (1993) 1171-1179.
  16. J.V.C. Vargas, A. Bejan, A. Dobrovicescu, The melting of an ice shell on a heated horizontal cylinder, J. Heat Tran. 116 (1994) 702-708.
  17. M. Oka, V.P. Carey, A unified treatment of the direct contact melting processes in several geometric cases, Int. Commun. Heat Mass Tran. 23 (2) (1996) 187-202.
  18. W.Z. Chen, S.M. Cheng, Z. Lou, An analytical solution of melting around a moving elliptical heat source, J. Therm. Sci. 3 (1) (1994) 23-27.
  19. M. Gong, W.Z. Chen, Y.S. Zhao, B. Zhu, F.R. Sun, Analysis of contact melting around a horizontal elliptical cylinder heat source, Prog. Nat. Sci. 18 (6) (2008) 441-446.
  20. M.A. Pudovcin, A.N. Salamatin, S.A. Fomin, V.K. Chistyakov, Effect of the working surface shape of a thermal drill on hot-point ice boring performance, J. Soviet Math. 43 (3) (1988) 2496-2505.
  21. S.A. Fomin, S.M. Cheng, Optimization of the heating surface shape in the contact melting problem, in: Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences, 1991, pp. 136-143. Washington D.C, Jan.
  22. M. Judd, An Introduction to the Engineering of Fast Nuclear Reactors, Cambridge University Press, New York, 2014.
  23. W.Z. Chen, Y.S. Zhao, F.R. Sun, Z.Y. Chen, M. Gong, Analysis of △T-driven contact melting of phase change material around a horizontal cylinder, Energy Convers. Manag. 49 (5) (2008) 1002-1007.
  24. A.N. Salamatin, S.A. Fomin, V.K. Chistyakov, V.A. Chugunov, Mathematical description and calculation of contact melting, J. Eng. Phys. 47 (1984) 1071-1077.
  25. A. Bejan, Contact melting heat transfer and lubrication, Adv. Heat Tran. 24 (1994) 1-38.
  26. X.C. Cui, Y.J. Jin, Z. Zhang, C. Liu, Numerical Simulation of inner-outer cooling flow field and temperature field for slab continuous casting, J. Iron Steel Res. 8 (2007) 14-18 (in Chinese) 19.
  27. M.K. Moallemi, R. Viskanta, Experimental on fluid flow induced by melting around a migrating heat source, J. Fluid Mech. 157 (1985) 35-51.
  28. J. Song, Q.A. Xiang, J. Deng, H.X. Yu, J. Du, J.S. Bi, Research on debris in-core cooling and retention characteristics, Nucl. Power Eng. 5 (2020) 193-196 (in Chinese) 40.