DOI QR코드

DOI QR Code

Seismic behavior of simplified electrical cabinet model considering cast-in-place anchor in uncracked and cracked concretes

  • Bub-Gyu Jeon (Seismic Research and Test Center, Pusan National University) ;
  • Sung-Wan Kim (Seismic Research and Test Center, Pusan National University) ;
  • Sung-Jin Chang (Seismic Research and Test Center, Pusan National University) ;
  • Dong-Uk Park (Seismic Research and Test Center, Pusan National University) ;
  • Hong-Pyo Lee (Korea Hydro and Nuclear Power Co, Ltd)
  • Received : 2023.04.10
  • Accepted : 2023.08.02
  • Published : 2023.11.25

Abstract

In the case of nuclear power plants near end of their design life, a reassessment of the performance of safetyrelated equipment may be necessary to determine whether to shut down or extend the operation of the power plant. Therefore, it is necessary to evaluate the level of performance decline due to degradation. Electrical cabinets, including MCC and switchgear, are representative safety-related equipment. Several studies have assessed the degradation and seismic performance of nuclear power plant equipment. Most of those researches are limited to individual components due to the size of safety-related equipment and test equipment. However, only a few studies assessed the degradation performance of electrical cabinets. The equipment of various nuclear power plants is anchored to concrete foundations, and crack in concrete foundations is one of the most representative of degradation that could be visually confirmed. However, it is difficult to find a study for analysis through testing the effect of cracks in concrete foundations on the response of electrical cabinet internal equipment fixed by anchors. In this study, using a simple cabinet model considering cast-in-place anchor in uncracked and cracked concretes, a tri-axial shaking table tests were performed and the seismic behavior were observed.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20217910100150).

References

  1. The Institute of Electrical and Electronics Engineers(IEEE), IEEE Std. 323-2004, in: IEEE Standard for Qualifiying Class 1E Equipmnent for Nuclear Power Generating Stations, New York, USA, 2004.
  2. Korea Electric Association, KEPIC EN(E-6), Nuclear Electrical and I&C Qualification, Republic of Korea, Seoul, 2010.
  3. Korea Electric Power Industry Code, Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generation Stations, KEPICEND-2000, 2010.
  4. Nuclear Safety And Security Commission (NSSC), Article 36(Timing for Periodic Safety Reviews) of the Enforcement Decree of the Nuclear Safety Act, NSSC, Seoul, Korea, 2021.
  5. K. Merz, P. Ibanez, Guidelines for estimation of cabinet dynamic amplification, Nucl. Eng. Des. 123 (2-3) (1990) 247-255. https://doi.org/10.1016/0029-5493(90)90244-R
  6. Eem Seunghyun, Lee Sangjin, Choi In-Kil, Chang Sung-Jin, Experimental Study on the In-Cabinet Response Spectrum Amplification Factor of Electrical Cabinets Due to the High Frequency Earthquake, SMiRT-25, Charlotte, NC, USA, 2019.
  7. EPRI, Guidelines for Development of In-Cabinet Amplified Response Spectra for Electrical Benchboards and Panels, NP-7146-SL, 1992.
  8. J. Yang, S.K. Rustogi, A. Gupta, Rocking stiffness of mounting arrangements in electrical cabinets and control panels, Nucl. Eng. Des. 219 (2) (2002) 127-141. https://doi.org/10.1016/S0029-5493(02)00279-0
  9. M.S. Han, S.K. Cho, K.J. Hong, A. Gupta, Rocking Stiffness of Electric Cabinet Considering the Local Deformation at the Base, in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2018.
  10. Sang-Moon Lee, Bub-Gyu Jeon, Woo-Young Jung, Seismic performance evaluation of concrete anchors used in power plant equipment by shaking table tests, KSCE J. Civ. Environ. Eng. Res. 41 (1) (2021) 21-28.
  11. M.S. Han, S.K. Cho, K.J. Hong, A. Gupta, Rocking Stiffness of Electric Cabinet Considering the Local Deformation at the Base, in: Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2018.
  12. Lloyd L. Bonzon, Donald B. Hente, Test Series 1: Seismic-fragility Tests of Naturally-Aged Class 1E Gould NCX-2250 Battery Cells, U.S. Nuclear regulatory commission, NUREG/CR-3923, 1984.
  13. 日本原子力発電株式会社, 東海第二発 電所 劣化状 況評価 (耐震安全性評価), 日本原子力発 電株式会社", 東海第二発電所 審査資料 TKK補-III-7 改 21, 2018.
  14. W.E. Gunther, M. Subudhi, J.H. Taylor, Operating Experience and Aging-Seismic Assessment of Battery Charger and Inverters, Engineering Technology Division, Nuclear Energy, Brookhaven National Laboratory, Upton, New York, 1986, 11973.
  15. W.E. Gunther, R. lewis, M. Subudhi, Detecting and Mitigating Battery Charger and Inverter Aging, US Nuclear Regulatory Commission, 1988, https://doi.org/10.2172/6710411.
  16. Sang-Moon Lee, Bub-Gyu Jeon, Woo-Young Jung, Evaluation of vibration characteristics according to changes in the fixing conditions of the electrical cabinet in power plants under an earthquake, Earthq. Struct. 23 (3) (2022) 245-257.
  17. Sang-Moon Lee, Bub-Gyu Jeon, Da-Won Yoon, Sung-Wan Kim, Woo-Young Jung, Seismic response characteristics of used molded transformer anchored on concrete slab, Trans. Korean Soc. Noise Vibr. Eng. 30 (6) (2020) 624-633. https://doi.org/10.5050/KSNVE.2020.30.6.624
  18. Nakhyun Chun, Bubgyu Jeon, Sungwan Kim, Sungjin Chang, Suwon Son, Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests, Struct. Eng. Mech. 84 (2) (2022) 155-165.
  19. ACI 355.2, Qualification of Post-Installed Mechanical Anchors in Concrete and Commentary, 2007.
  20. Deutsches Institut fur Bautechnik (DIBt), DIBt-Guideline, Guideline for Fastenings with Anchors in Nuclear Power Plants and Nuclear Facilities, DIBt, Berlin, Germany, 2010.
  21. R.E. Klingner, J.A. Mendonca, J.B. Malik, Effect of reinforcing details on the shear resistance of anchor bolts under reversed cyclic loading, J. Am. Concr. Inst. 79 (1) (1982) 3-12. https://doi.org/10.14359/10455
  22. C.C. Higgins, R.E. Klingner, Effects of environmental exposure on the performance of cast-in-place and retrofit anchors in concrete, Am. Concr. Inst. Struct. J. 95 (5) (1998) 506-517. https://doi.org/10.14359/565
  23. J. Eibl, E. Keintzel, Zur Beanspruchung von Befestigungsmitteln bei dynamischen Lasten (On the Dynamic Loading of Fastenings), Institut fur Massivbau und Baustofftechnologie, Universitat Karlsruhe, 1989, p. 169 (in German).
  24. J. Eibl, E. Keintzel, Verhalten von Dubeln unter hoher Stos-und Wechselbeanspruchung (Behaviour of Anchors under High Speed Impact and Reversed Cyclic Loads), Institut fur Massivbau und Baustofftechnologie, Universitat Karlsruhe, 1989, p. 136 (in German).
  25. E. Vintzeleou, R. Eligehausen, Behaviour of fasteners under monotonic or cyclic shear displacements, Anchors Concr.- Des. Behav., Am. Concr. Inst. Spec. Publ. 130 (7) (1991) 181-204.
  26. ASTM International, ASTM A36/A36M-19: Standard Specification for Carbon Structural Steel, West Conshohocken, PA 19428-2959, USA, 2019.
  27. H.T. Rivera-Rosarino, J.S. Powell, Installation Torque Tables for Noncritical Applications, NASA Technical Reports Server (NTRS), USA, 2017.
  28. Korea Concrete Institute, Anchor Design Methods and Examples for Concrete, 2018. KCI-M-10-005.
  29. Sung-Jin Chang, Dong-Uk Park, Young-Soo Jeong, Evaluation of MCC seismic response according to frequency contents by shake table test, Nucl. Eng. Technol. 53 (4) (2021) 1345-1356. https://doi.org/10.1016/j.net.2020.10.002
  30. Young-Soo Jeong, Seung-Hyun Eem, Bub-Gyu Jeon, Dong-Uk Park, Evaluation of structural and functional behavior of battery charger for low/high-frequency motions in NPP, Appl. Sci. 12 (9) (2022) 1-17. https://doi.org/10.3390/app12094328
  31. S. Matthew, Hoehler and rolf Eligehausen, behavior and testing of anchors in simulated seismic cracks, ACI Struct. J. 105 (3) (2008) 348-357. https://doi.org/10.14359/19794
  32. P. Mahrenholtz, R. Eligehausen, Behavior of Anchor Groups Installed in Cracked Concrete under Simulated Seismic Actions, Fracture Mechanics of Concrete and Concrete Structures, Korea Concrete Institute, Seoul, 2010, pp. 816-822.
  33. Sang-Yun Kim, Yu Chul-Soo, Yoon Young-Soo, Sleeve-type expansion anchor behavior in cracked and uncracked concrete, Nucl. Eng. Des. 228 (1-3) (2004) 273-281. https://doi.org/10.1016/j.nucengdes.2003.06.018
  34. Lee Sang Moon, Jung Woo Young, Evaluation of structural performance of postinstalled anchors embedded in cracked concrete in power plant facilities, Appl. Sci. 11 (8) (2021) 3488.
  35. The Institute of Electrical and Electronics Engineers (IEEE), IEEE Std. 693-2018; IEEE Recommended Practice for Seismic Design of Substations, New York, USA, 2018.
  36. The Institute of Electrical and Electronics Engineers (IEEE), IEEE Std. 344-2013; IEEE Seismic Qualification of Equipment for Nuclear Power Generating Stations, New York, USA, 2013.
  37. N. Chun, B. Jeon, S. Kim, S. Chang, S. Son, Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests, Struct. Eng. Mech. 84 (2) (2022) 155-165.
  38. Min Kyu Kim, In-Kil Choi, A Seismic Fragility Evaluation for Electrical Cabinet in NPP through a Shaking Table Test, in: Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, 2009.
  39. NUREG/CR-5203, K.K. Bandyopadhyay, C.H. Hofmayer, M.K. Kassir, S.E. Pepper, Dynamic Amplification of Electrical Cabinets, 1988.
  40. Jonathan Ciurlanti, Simona Bianchi, Andreas Purgstaller, Patricio Quintana Gallo, Konrad Bergmeister, Stefano Pampanin, Shake table tests of concrete anchors for non-structural components including innovative and alternative anchorage detailing, Bull. Earthq. Eng. 20 (2022) 3971-3993. https://doi.org/10.1007/s10518-022-01359-2