DOI QR코드

DOI QR Code

Gas ebullition associated with biological processes in radioactively contaminated reservoirs could lead to airborne radioactive contamination

  • E.A. Pryakhin (Urals Research Center for Radiation Medicine) ;
  • Yu.G. Mokrov (Mayak Production Association) ;
  • A.V. Trapeznikov (Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences) ;
  • N.I. Atamanyuk (Urals Research Center for Radiation Medicine) ;
  • S.S. Andreyev (Urals Research Center for Radiation Medicine) ;
  • A.A. Peretykin (Urals Research Center for Radiation Medicine) ;
  • K. Yu. Mokrov (Mayak Production Association) ;
  • M.A. Semenov (Mayak Production Association) ;
  • A.V. Akleyev (Urals Research Center for Radiation Medicine)
  • Received : 2022.11.16
  • Accepted : 2023.07.30
  • Published : 2023.11.25

Abstract

Background: Storage reservoirs of radioactive waste could be the source of atmospheric pollution due to the efflux of aqueous aerosol from their water areas. The main mechanism of formation of aqueous aerosols is the collapse of gas bubbles at the water surface. In this paper, we discuss the potential influence of biological factors on gas ebullition in the water areas of the radioactively contaminated industrial reservoirs R-9 (Lake Karachay) and R-4 (Metlinsky pond) of the Mayak PA. The emission of the released non-dissolved gases captured with gas traps in reservoir R-9 was (88-290) ml/m2 per day (2015) and in reservoir R-4 (270-460) ml/m2 per day (2016). The analysis of gas composition in reservoir R-4 (60% methane, 35% nitrogen, 2.4% oxygen, 1.5% carbon dioxide) confirms their biological origin. It is associated with the processes of organic matter destruction in bottom sediments. The major source of organic matter in bottom sediments is the dying phytoplankton developing in these reservoirs. Conclusion: The obtained results form the basis to set a task to quantify the relationship between the phytoplankton development, gases ebullition and radioactive atmosphere contamination.

Keywords

References

  1. P. Nelis, The Transfer of Radionuclides from Sea to Land in Sea Spray, Thesis for Degree of Doctor of Philosophy, University of Edinburgh, Edinburgh, 1990, p. 183.
  2. P.M. Nelis, D. Branford, M.H. Unsworth, A model of the transfer of radioactivity from sea to land in sea spray, Atmos. Environ. 28 (1994) 3213-3223. https://doi.org/10.1016/1352-2310(94)00168-K
  3. Yu.G. Mokrov, K.Yu. Mokrov, Modeling of atmospheric transfer of radionuclides in the form of water aerosols from the surface area of water bodies using the example of Lake Karachay, Russia, Radiat. Environ. Biophys. 58 (2019) 393-405. https://doi.org/10.1007/s00411-019-00799-w
  4. Report on Environmental Safety of FSUE PA Mayak for 2020, State Corporation Rosatom; FSUE PA Mayak. - Ozersk: RIC VRB, Printing house of FSUE "PO Mayak, 2021, p. 64 ([In Russian]).
  5. A. Kruglov, The History of the Soviet Atomic Industry, Taylor & Francis, London, 2002.
  6. Impacts on Man and the Environment in Northern Areas from Hypothetical Accidents at «Mayak» PA, Urals, Russia, Programme on Investigations of Possible Impacts of the «Mayak» PA Activities on Radioactive Contamination of the Barents and Kara Seas, Osteras, Norway, 2004.
  7. Yu.V. Glagolenko, E.G. Drozhko, Yu.G. Mokrov, Specific features of the formation of the techa river radio0active contamination, Radiat. Saf. Probl. 2 (46) (2007) 27-36 ([In Russian]).
  8. E.G. Drozhko, B.G. Samsonova, Reservoir-9 - Storage of Liquid Radioactive Waste and its Impact on the Geological Environment, Rosatom, Moscow, 2007 ([In Russian]).
  9. K.Yu. Mokrov, Yu.G. Mokrov, Reconstruction of area-related 90Sr and 137Cs fallout in the vicinity of the Mayak PA from 1950 to 2020 (a case study of Novogorny settlement), Radiat. Saf. Probl. 2 (102) (2021) 35-45 ([In Russian]).
  10. K.Yu. Mokrov, Yu.G. Mokrov, Analysis of results of monitoring of atmospheric contamination with 90Sr and 137Cs in the vicinity of the Mayak PA over the period 2000-2019, Radiat. Saf. Probl. 1 (101) (2021) 37-50 ([In Russian]).
  11. Yu.G. Mokrov, K.Yu. Mokrov, Study of atmospheric contamination in the vicinity of lake Karachay as a result of wind transfer of water aerosol from its surface, Radiat. Saf. Probl. 1 (85) (2017) 67-79 ([In Russian]).
  12. K.Yu. Mokrov, Yu.G. Mokrov, Assessment of integral carryover of long-lived radionuclides with water aerosols from Karachay lake based on the analysis of data on soil contamination in the area of its location, Radiat. Saf. Probl. 1 (89) (2018) 19-35 ([In Russian]).
  13. Y.G. Mokrov, K.Y. Mokrov, Characteristics of atmospheric transfer of water aerosols from the surface area of lake Karachay under conditions of non uniform topography, Radiat. Saf. Probl. 2 (94) (2019) 3-21 ([In Russian]).
  14. K.Yu. Mokrov, Yu.G. Mokrov, Analysis of caesium-137 atmospheric fallouts in Mayak PA control area taking Novogorny settlement as an example, Radiat. Saf. Probl. 2 (2015) 16-27 ([In Russian]).
  15. K.Yu. Mokrov, Yu.G. Mokrov, Study of parameters of source of water aerosol generation from the Karachay aquatic area, Radiat. Saf. Probl. 1 (2016) 20-29 ([In Russian]).
  16. D.E. Slauenwhite, B.D. Johnson, Bubble shattering: differences in bubble formation in fresh water and seawater, J. Geophys. Res. 104 (1999) 3265-3275.
  17. L. Cavaleri, Rain, wave breaking and spray, in: P. Vlahos, E. Monahan (Eds.), Recent Advances in the Study of Oceanic Whitecaps, Springer, Cham, 2020.
  18. B.L. Miller, E.V. Arntzen, A.E. Goldman, M.C. Richmond, Methane ebullition in temperate hydropower reservoirs and implications for US policy on greenhouse gas emissions, Environ. Manage. 60 (4) (2017) 615-629. https://doi.org/10.1007/s00267-017-0909-1
  19. X. Jiang, L. Rotily, E. Villermaux, X. Wang, Submicron drops from flapping bursting bubbles, Proc. Natl. Acad. Sci. USA 119 (2022), e2112924119.
  20. S. Sofieva, E. Asmi, N.S. Atanasova, A. Heikkinen, E. Vidal, J. Duplissy, M. Romantschuk, R. Kouznetsov, J. Kukkonen, D. Bamford, A.-P. Hyvarinen, M. Sofiev, Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chamber, Atmos. Meas. Tech. 15 (20) (2022) 6201-6219. https://doi.org/10.5194/amt-15-6201-2022
  21. B. Ji, Z. Yang, J. Feng, Compound jetting from bubble bursting at an air-oil-water interface, Nat. Commun. 12 (2021) 6305.
  22. L. Bourouiba, The fluid dynamics of disease transmission, Annu. Rev. Fluid Mech. 53 (2021) 473-508. https://doi.org/10.1146/annurev-fluid-060220-113712
  23. K. Delwiche, J. Gu, H. Hemond, S.P. Preheim, Vertical transport of sediment-associated metals and cyanobacteria by ebullition in a stratified lake, Biogeosciences 17 (12) (2020) 3135-3147. https://doi.org/10.5194/bg-17-3135-2020
  24. B. Ji, A. Singh, J. Feng, Water-to-air transfer of nano/microsized particulates: enrichment effect in bubble bursting jet drops, Nano Lett. 22 (13) (2022) 5626-5634. https://doi.org/10.1021/acs.nanolett.2c01102
  25. H. Lhuissier, E. Villermaux, Bursting bubble aerosols, J. Fluid Mechanics 696 (2012) 5-44. https://doi.org/10.1017/jfm.2011.418
  26. J. Rydberg, J.-O. Liljenzin, G.R. Choppin, Radiation effects on matter, in: Radiochemistry and Nuclear Chemistry, third ed., Elsevier, Amsterdam, 2001, p. 167.
  27. T. Langenegger, D. Vachon, D. Donis, D.F. McGinnis, What the bubble knows: lake methane dynamics revealed by sediment gas bubble composition, Limnol Oceanogr 64 (2019) 1526-1544.
  28. R. Gruca-Rokosz, M. Cie'sla, Sediment methane production within eutrophic reservoirs: the importance of sedimenting organic matter, Sci. Total Environ. 799 (2021), 149219.
  29. Y. Zhou, X. Xu, K. Song, S. Yeerken, M. Deng, L. Li, S. Riya, Q. Wang, A. Terada, Nonlinear pattern and algal dual-impact in N2O emission with increasing trophic levels in shallow lakes, Water Res. 203 (2021), 117489.
  30. M. Koschorreck, I. Hentschel, B. Boehrer, Oxygen ebullition from lakes, Geophys. Res. Lett. 44 (2017) 9372-9378. https://doi.org/10.1002/2017GL074591
  31. M.H. Long, K. Sutherland, S.D. Wankel, D.J. Burdige, R.C. Zimmerman, Ebullition of oxygen from seagrasses under supersaturated conditions, Limnol Oceanogr 65 (2020) 314-324. https://doi.org/10.1002/lno.11299
  32. P. Casper, S.C. Maberly, G.H. Hall, B.J. Finlay, Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere, Biogeochemistry 49 (2000) 1-19. https://doi.org/10.1023/A:1006269900174
  33. D. Martinez, M.A. Anderson, Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA), Sci. Total. Environ. 454-455 (2013) 457-465. https://doi.org/10.1016/j.scitotenv.2013.03.040
  34. J.J. Beaulieu, D.A. Balz, M.K. Birchfield, J.A. Harrison, C.T. Nietch, M.C. Platz, W. C. Squier, S. Waldo, J.T. Walker, K.M. White, J.L. Young, Effects of an experimental water-level drawdown on methane emissions from a eutrophic reservoir, Ecosystems 21 (4) (2018) 657-674. https://doi.org/10.1007/s10021-017-0176-2
  35. D. Zhu, Y. Wu, H. Chen, Y. He, N. Wu, Intense methane ebullition from open water area of a shallow peatland lake on the eastern Tibetan Plateau, Sci. Total Environ. 542 (Pt A) (2016) 57-64. https://doi.org/10.1016/j.scitotenv.2015.10.087
  36. M. Bartosiewicz, I. Laurion, F. Clayer, R. Maranger, Heat-wave effects on oxygen, nutrients, and phytoplankton can alter global warming potential of gases emitted from a small shallow lake, Environ. Sci. Technol. 50 (2016) 6267-6275. https://doi.org/10.1021/acs.est.5b06312
  37. M. Bartosiewicz, R. Maranger, A. Przytulska, I. Laurion, Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake, Water Res. 196 (2021), 116985.
  38. S. Waldo, J.J. Beaulieu, W. Barnett, D.A. Balz, M.J. Vanni, T. Williamson, J. T. Walker, Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst, Biogeosciences 18 (2021) 5291-5311.
  39. J.I.K. Schwarz, W. Eckert, R. Conrad, Response of the methanogenic microbial community of a profundal lake sediment (Lake Kinneret, Israel) to algal deposition, Limnol. Oceanogr. 53 (2008) 113-121. https://doi.org/10.4319/lo.2008.53.1.0113
  40. W.E. West, J.J. Coloso, S.E. Jones, Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment, Fresh, Biol 57 (2012) 949-955.
  41. W.E. West, S.M. McCarthy, S.E. Jones, Phytoplankton lipid content influences freshwater lake methanogenesis, Freshwater Biol. 60 (2015) 2261-2269. https://doi.org/10.1111/fwb.12652
  42. C. Grasset, R. Mendonca, G.V. Saucedo, D. Bastviken, F. Roland, S. Sobek, Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter, Limnol. Oceanogr. 63 (2018) 1488-1501. https://doi.org/10.1002/lno.10786
  43. Key to Freshwater Algae of the USSR, Vol. vols. 1-14, Publishing House of the Academy of Sciences of the USSR, Moscow and Leningrad, 1951-1986.
  44. J. Komarek, K. Anagnostidis, Cyanoprokaryota, 2nd Part: Oscillatoriales, Elsevier GmbH, Munchen, 2005.
  45. Properties of the solar system, in: CRC Handbook of Chemistry and Physics, 90th ed., D.R. Lide (Ed.), CRC Press/Taylor and Francis, Boca Raton, FL. p. 14-3.
  46. K.M. Walter, J.P. Chanton, F.S. Chapin, E.A.G. Schuur, S.A. Zimov, Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages, J. Geophys. Res. 113 (2008), G00A08.
  47. Y. Zheng, S. Wu, S. Xiao, K. Yu, X. Fang, L. Xia, J. Wang, S. Liu, C. Freeman, J. Zou, Global methane and nitrous oxide emissions from inland waters and estuaries, Glob. Chang Biol. 28 (2022) 4713-4725. https://doi.org/10.1111/gcb.16233
  48. T. Yu, M. Zhang, D. Kang, S. Zhao, A. Ding, Q. Lin, D. Xu, Y. Hong, L. Wang, P. Zheng, Characteristics of microbial communities and their correlation with environmental substrates and sediment type in the gas-bearing formation of Hangzhou bay, China, Front Microbiol. 10 (2019) 2421.
  49. S.S. Barinova, L.А. Medvedeva, O.V. Anissimova, Diversity of Algal Indicators in Environmental Assessment, Pilies Studio, Tel Aviv, 2006 ([In Russian]).
  50. H. Singh, Desiccation and radiation stress tolerance in cyanobacteria, J. Basic Microbiol. 58 (10) (2018) 813-826. https://doi.org/10.1002/jobm.201800216
  51. R. Pravalie, Nuclear weapons tests and environmental consequences: a global perspective, Ambio 43 (2014) 729-744.
  52. C.T. Garten Jr., D.M. Hamby, R.G. Schreckhise, Radiocesium discharges and subsequent environmental transport at the major US weapons production facilities, Sci. Total. Environ. 255 (2000) 55-73. https://doi.org/10.1016/S0048-9697(00)00449-6
  53. G. Steinhauser, A. Brandl, T.E. Johnson, Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts, Sci. Total. Environ. 470-471 (2014) 800-817. https://doi.org/10.1016/j.scitotenv.2013.10.029
  54. A. Panov, A. Trapeznikov, V. Trapeznikova, A. Korzhavin, Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond. Part 1: surface water and bottom sediments, Nucl. Eng. Technol. 54 (2022) 3034-3042.
  55. M. Schmid, I. Ostrovsky, D.F. McGinnis, Role of gas ebullition in the methane budget of a deep subtropical lake: what can we learn from process-based modeling? Limnol. Oceanogr. 62 (2017) 2674-2698.
  56. R. Conrad, Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal, Org. Geochem. 36 (2005) 739-752.
  57. D. Bastviken, L.J. Tranvik, J.A. Downing, P.M. Crill, A. Enrich-Prast, Freshwater methane emissions offset the continental carbon sink, Science 331 (2011) 50.
  58. E. Mannisto, A. Korrensalo, P. Alekseychik, I. Mammarella, O. Peltola, T. Vesala, E.-S. Tuittila, Multi-year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog, Biogeosciences 16 (2019) 2409-2421. https://doi.org/10.5194/bg-16-2409-2019
  59. S. Schulz, R. Conrad, Effect of algal deposition on acetate and methane concentrations in the profundal sediment of a deep lake (Lake Constance), FEMS Microb. Ecol. 16 (1995) 251-260. https://doi.org/10.1111/j.1574-6941.1995.tb00289.x
  60. S. Sobek, T. DelSontro, N. Wongfun, B. Wehrli, Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir, Geophys. Res. Lett. 39 (2012), L01401.
  61. G. Yvon-Durocher, A.P. Allen, D. Bastviken, R. Conrad, C. Gudasz, A. St-Pierre, N. Thanh-Duc, P.A. del Giorgio, Methane fluxes show consistent temperature dependence across microbial to ecosystem scales, Nature 507 (2014) 488-491. https://doi.org/10.1038/nature13164
  62. J. Wilkinson, A. Maeck, Z. Alshboul, A. Lorke, Continuous Seasonal River ebullition measurements linked to sediment methane formation, Environ. Sci. Technol. 49 (2015) 13121-13129. https://doi.org/10.1021/acs.est.5b01525
  63. T. DelSontro, D.F. McGinnis, S. Sobek, I. Ostrovsky, B. Wehrli, Extreme methane emissions from a swiss hydropower reservoir: contribution from bubbling sediments, Environ. Sci. Technol. 44 (2010) 2419-2425. https://doi.org/10.1021/es9031369
  64. J.T. Huttunen, K.M. Lappalainen, E. Saarijarvi, T. Vasanen, P.J. Martikainen, A novel sediment gas sampler and a subsurface gas collector used for measurement of the ebullition of methane and carbon dioxide from a eutrophied lake, Sci. Total. Environ. 266 (2001) 153-158. https://doi.org/10.1016/S0048-9697(00)00749-X
  65. S. Natchimuthu, I. Sundgren, M. Galfalk, L. Klemedtsson, P. Crill, A. Danielsson, D. Bastviken, Spatio-temporal variability of lake CH4 fluxes and its influence on annual whole lake emission estimates, Limnol. Oceanogr. 61 (2016) S13-S26. https://doi.org/10.1002/lno.10222
  66. M. Wik, B.F. Thornton, D. Bastviken, J. Uhlback, P.M. Crill, Biased sampling of methane release from northern lakes: a problem for extrapolation, Geophys. Res. Lett. 43 (2016) 1256-1262. https://doi.org/10.1002/2015GL066501
  67. K. Delwiche, S. Senft-Grupp, H. Hemond, A novel optical sensor designed to measure methane bubble sizes in situ, Limnol. Oceanogr. Methods 13 (2015) 712-721. https://doi.org/10.1002/lom3.10060
  68. Y. Gao, N. Yi, Z. Zhang, H. Liu, S. Yan, Fate of NO and NH in the treatment of eutrophic water using the floating macrophyte, J. Environ. Qual. 41 (2012) 1653-1660. https://doi.org/10.2134/jeq2011.0324
  69. M.R. Hamersley, B.L. Howes, Evaluation of the N2 flux approach for measuring sediment denitrification, Estuarine, Coastal Shelf Sci. 62 (2005) 711-723. https://doi.org/10.1016/j.ecss.2004.10.008
  70. T. DelSontro, L. Boutet, A. St-Pierre, P.A. del Giorgio, Y.T. Prairie, Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity, Limnol. Oceanogr. 61 (S1) (2016) S62-S77. https://doi.org/10.1002/lno.10335
  71. H. Sun, X. Lu, R. Yu, J. Yang, X. Liu, Z. Cao, Z. Zhang, M. Li, Y. Geng, Eutrophication decreased CO2 but increased CH4 emissions from lake: a case study of a shallow Lake Ulansuhai, Water Res. 201 (2021), 117363.
  72. A. Pickard, S. White, S. Bhattacharyya, L. Carvalho, A. Dobel, J. Drewer, P. Jamwal, C. Helfter, Greenhouse gas budgets of severely polluted urban lakes in India, Sci. Total. Environ. 798 (2021), 149019.
  73. Y. Zhou, K. Song, R. Han, S. Riya, X. Xu, S. Yeerken, S. Geng, Y. Ma, A. Terada, Nonlinear response of methane release to increased trophic state levels coupled with microbial processes in shallow lakes, Environ. Pollut. 265 (Pt B) (2020), 114919.
  74. T.A. Davidson, J. Audet, J.C. Svenning, T.L. Lauridsen, M. Sondergaard, F. Landkildehus, S.E. Larsen, E. Jeppesen, Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming, Glob. Chang. Biol. 21 (2015) 4449-4463. https://doi.org/10.1111/gcb.13062
  75. Е.А. Pryakhin, G.A. Tryapitsyna, L.V. Deryabina, S.S. Andreev, N.I. Dukhovnaya, D.I. Osipov, N.А. Obvintseva, Е.V. Styazhkina, V.A. Kostyuchenko, I.Ya. Popova, A. V. Akleev, P.M. Stukalov, I.A. Ivanov, Yu.G. Mokrov, A.G. Medvedev, Current ecosystem state of reservoirs R-11, R-10, R-4, R-17 and R-9 of Mayak PA, Radiat. Saf. Probl. S2 (2011) 5-23 ([In Russian]).
  76. N.I. Duhovnaya, D.I. Osipov, G.A. Tryapitsyna, E.A. Pryakhin, P.M. Stukalov, Status of phytoplanktonic communities under the radioactive and chemical contamination of Mayak PA reservoirs, Radiat. Saf. Probl. S2 (2011) 24-36 ([In Russian]).
  77. E.A. Pryakhin, G.A. Tryapitsina, L.V. Deryabina, N.I. Atamanyuk, P.M. Stukalov, I. A. Ivanov, V.A. Kostyuchenko, A.V. Akleyev, Status of ecosystems in radioactive waste reservoirs of the Mayak Production Association in 2009, Health Phys. 103 (2012) 61-63. https://doi.org/10.1097/HP.0b013e31824be79a
  78. E.A. Priakhin, G.A. Triapitsina, N.I. Atamaniuk, D.I. Osipov, P.M. Stukalov, I. A. Ivanov, I.Ia. Popova, A.V. Akleev, Phytoplankton and zooplankton of the industrial reservoir R-9 (Lake Karachay), Radiats. Biol. Radioecol. 52 (2012) 419-427 ([In Russian]).
  79. N.I. Atamanyuk, D.I. Osipov, G.A. Tryapitsina, L.V. Deryabina, P.M. Stukalov, I. A. Ivanov, E.A. Pryakhin, Characteristics of phytoplankton in Lake Karachay, a storage reservoir of medium-level radioactive waste, Health Phys. 103 (2012) 47-49. https://doi.org/10.1097/HP.0b013e318249bebf
  80. E.A. Pryakhin, Y.G. Mokrov, G.A. Tryapitsina, I.A. Ivanov, D.I. Osipov, N. I. Atamanyuk, L.V. Deryabina, I.A. Shaposhnikova, E.A. Shishkina, N. A. Obvintseva, E.A. Egoreichenkov, E.V. Styazhkina, O.F. Osipova, N. I. Mogilnikova, S.S. Andreev, O.V. Tarasov, S.A. Geras'kin, A.V. Trapeznikov, A. V. Akleyev, Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report, J. Environ. Radioact. 151 Part 2 (2016) 449-460. https://doi.org/10.1016/j.jenvrad.2015.05.023
  81. J.L. Axson, N.W. May, I.D. Colon-Bernal, ' K.A. Pratt, A.P. Ault, Lake spray aerosol: a chemical signature from individual ambient particles, Environ. Sci. Technol. 50 (2016) 9835-9845.
  82. E. Rastelli, C. Corinaldesi, A. Dell'Anno, M. Lo Martire, S. Greco, M. Cristina Facchini, M. Rinaldi, C. O'Dowd, D. Ceburnis, R. Danovaro, Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach, Sci. Rep. 7 (2017), 11475.
  83. L.T. Cravigan, M.D. Mallet, P. Vaattovaara, M.J. Harvey, C.S. Law, R.L. Modini, L. M. Russell, E. Stelcer, D.D. Cohen, G. Olsen, K. Safi, T.J. Burrell, Z. Ristovski, Sea spray aerosol organic enrichment, water uptake and surface tension effects, Atmos. Chem. Phys. 20 (2020) 7955-7977. https://doi.org/10.5194/acp-20-7955-2020
  84. C. Oppo, S. Bellandi, N. Degli Innocenti, A.M. Stortini, G. Loglio, E. Schiavuta, R. Cini, Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols, Marine Chem. 63 (1999) 235-253.
  85. Yu.G. Mokrov, K.Yu. Mokrov, M.V. Ishunina, A.V. Efimov, S.A. Romanov, Evaluation of contribution of various sources of atmospheric contamination with plutonium in the vicinity of Mayak PA between 2002 and 2016, Radiat. Saf. Probl. 2 (2017) 35-46 ([In Russian])