DOI QR코드

DOI QR Code

Failure simulation of nuclear pressure vessel under severe accident conditions: Part II - Failure modeling and comparison with OLHF experiment

  • 투고 : 2023.05.28
  • 심사 : 2023.07.26
  • 발행 : 2023.11.25

초록

This paper proposes strain-based failure model of A533B1 pressure vessel steel to simulate failure, followed by application to OECD lower head failure (OLHF) test simulation for experimental validation. The proposed strain-based failure model uses simple constant and linear functions based on physical failure modes with the critical strain value determined either using the lower bound of true fracture strain or using the average value of total elongation depending on the temperature. Application to OECD Lower Head Failure (OLHF) tests shows that progressive deformation, failure time and failure location can be well predicted.

키워드

과제정보

This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea. (No. 2103079)

참고문헌

  1. L.L. Humphries, T.Y. Chu, J. Bentz, R. Simpson, C. Hanks, W. Lu, B. Antoun, C. Robino, J. Puskar, P. Mongabure, OECD Lower Head Failure Project Final Report, Sandia National Laboratories, Albuquerque, NM, 2002, p. 87185, 1139.
  2. E.K. Park, J.S. Kim, J.W. Park, Y.J. Kim, Y. Takahashi, K. Lim, Failure Simulation of Nuclear Pressure Vessel under Severe Accident Conditions, Part I - Material Constitutive Modeling, Nuclear Engineering and Technology.
  3. T.H. Lee, Y.J. Oh, I.S. Hwang, Bottom-mounted nozzle failure modes of a nuclear reactor pressure vessel under severe accident conditions, Key Eng. Mater. 297 (2005) 1652-1658. https://doi.org/10.4028/www.scientific.net/KEM.297-300.1652
  4. F.W. Brust, R. Iyengar, M. Benson, H. Rathbun, Severe accident condition modeling in PWR environment: creep rupture modeling, in: Am. Soc. Mech. Eng. Press. Vessel, Pip. Div. PVP, 2013, 55638. V01AT01A054.
  5. T.H. Kim, S.H. Kim, Y.S. Chang, Structural assessment of reactor pressure vessel under multi-layered corium formation conditions, Nucl. Eng. Technol. 47 (3) (2015) 351-361. https://doi.org/10.1016/j.net.2014.12.017
  6. Y.J. Lee, J.M. Kim, H.M. Kim, D.H. Lee, C.K. Chung, Structural integrity evaluation of reactor pressure vessel bottom head without penetration nozzles in core melting accident, J. Comput. Struct. Eng. Inst. Korea. 27 (3) (2014) 191-198. https://doi.org/10.7734/COSEIK.2014.27.3.191
  7. J. Arndt, H. Grebner, J. Sievers, Failure assessment methodologies for pressure-retaining components under severe accident loading, Sci. Technol. Nucl. Install. 2012 (2012) Article ID 487371.
  8. J.F. Mao, J.W. Zhu, S.Y. Bao, L.J. Luo, Z.L. Gao, Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario, Int. J. Pres. Ves. Pip. 139 (2016) 107-116. https://doi.org/10.1016/j.ijpvp.2016.03.009
  9. V. Koundy, F. Fichot, H.G. Willschuetz, E. Altstadt, L. Nicolas, J.S. Lamy, L. Flandi, Progress on PWR lower head failure predictive models, Nucl. Eng. Des. 238 (9) (2008) 2420-2429. https://doi.org/10.1016/j.nucengdes.2008.03.004
  10. T.Y. Chu, M.M. Pilch, J.H. Bentz, J.S. Ludwigsen, W.Y. Lu, L.L. Humphries, Lower Head Failure Experiments and Analyses, vol. 5582, NUREG/CR-, 1998, pp. 98-2047.
  11. Y. Takahashi, Modelling of rupture ductility of metallic materials for wide ranges of temperatures and loading conditions, part I: development of basic model, Mater. A. T. High. Temp. 37 (6) (2020) 357-369.
  12. J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solid. 17 (3) (1969) 201-217. https://doi.org/10.1016/0022-5096(69)90033-7
  13. Y. Takahashi, Unified constitutive modeling of three alloys under a wide range of temperature, Int. J. Pres. Ves. Pip. 172 (2019) 166-179. https://doi.org/10.1016/j.ijpvp.2019.03.018
  14. Y. Takahashi, Development of accurate inelastic analysis models for materials constituting penetrations in reactor vessel, Denryoku Chuo Kenkyusho Hokoku 1-4 (2015).
  15. J.L. Rempe, S. a Chavez, G.L. Thinnes, Light Water Reactor Lower Head Failure Analysis (No. NUREG/CR-5642; EGG-2618), Nuclear Regulatory Commission, Washington, DC (United States), 1993.
  16. ABAQUS, Abaqus User's Manual Version 2019, Dassault Syst'emes Simulia Corp. Provid. RI, USA, 2019.
  17. J.M. Park, K. Lim, Multi-dimensional finite element analyses of OECD lower head failure tests, Nucl. Eng. Technol. 54 (12) (2022) 4522-4533. https://doi.org/10.1016/j.net.2022.08.015
  18. L. Nicolas, M. Durin, V. Koundy, E. Mathet, A. Bucalossi, P. Eisert, J. Sievers, L. Humphries, J. Smith, V. Pistora, K. Ikonen, Results of benchmark calculations based on OLHF-1 test, Nucl. Eng. Des. 223 (3) (2003) 263-277. https://doi.org/10.1016/S0029-5493(03)00064-5
  19. P. Gao, H. Yang, B. Zhang, J. Shan, Development of PWR lower head failure model for severe accident analysis, Nucl. Eng. Des. 403 (2023), 112142.
  20. V. Koundy, C. Caroli, L. Nicolas, P. Matheron, J.M. Gentzbittel, M. Coret, Study of tearing behaviour of a PWR reactor pressure vessel lower head under severe accident loadings, Nucl. Eng. Des. 238 (9) (2008) 2411-2419. https://doi.org/10.1016/j.nucengdes.2008.03.005