DOI QR코드

DOI QR Code

아세틸 트라이뷰틸 구연산 가소제를 이용한 PVC 겔 기반 마찰전기 나노발전기 개발

Plasticized Poly(Vinyl Chloride)-Acetyl Tributyl Citrate Gels Based Triboelectric Nanogenerator

  • 박도혜 (대구경북과학기술원 기초학부) ;
  • 박효식 (대구경북과학기술원 에너지공학과 ) ;
  • 이주혁 (대구경북과학기술원 기초학부)
  • Dohye, Park (School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Hyosik, Park (Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Ju-Hyuck, Lee (School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology)
  • 투고 : 2022.09.06
  • 심사 : 2022.09.19
  • 발행 : 2023.01.01

초록

A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electrical energy, and has been considered as a substitute for continuous power supply due to its high performance, simple structure and eco-friendliness. Recently, it is important to develop a TENG using a non-toxic material in order to use it as a power source for wearable, attachable, and body-embeddable electronics. Here, we developed a human friendly TENG using polyvinyl chloride (PVC) gel containing acetyl tributyl citrate (ATBC), a non-toxic plasticizer. PVC gels were fabricated using various ratios of PVC and ATBC, and optimized by investigating dielectric properties, surface potential, output performance, and durability. The PVC gel based TENG generates output signals of 73 V and 4.3 μA, i.e., a 5-fold enhancement in the output power compared to pristine PVC-based TENG. In addition, the PVC gel can be stretched over 500% of strain. This study is expected to be helpful in the future development of non-toxic wearable TENG.

키워드

과제정보

본 연구는 한국연구재단이 지원하는 신진연구지원사업(2020R1C1C1007436)의 지원으로 수행되었습니다.

참고문헌

  1. W. Kim, D. Kim, I. Tcho, J. Kim, M. Kim, and Y. Choi, ACS Nano, 15, 258 (2021). [DOI: https://doi.org/10.1021/acsnano.0c09803] 
  2. G. Li, G. Wang, Y. Cai, N. Sun, F. Li, H. Zhou, H. Zhao, X. Zhang, J. Han, and Y. Yang, Nano Energy, 75, 104918 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104918] 
  3. Y. Shao, C. Luo, B. Deng, B. Yin, and M. Yang, Nano Energy, 67, 104290 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2019.104290] 
  4. X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, Science Advances, 3, e1700015 (2017). [DOI: https://doi.org/10.1126/sciadv.1700015] 
  5. W. Liao, X. Liu, Y. Li, X. Xu, J. Jiang, S. Lu, D. Bao, Z. Wen, and X. Sun, Nano Research, 15, 2060 (2022). [DOI: https://doi.org/10.1007/s12274-021-3797-x] 
  6. H. Park, S. Oh, D. Kim, M. Kim, C. Lee, H. Joo, I. Woo, J. Bae, and J. Lee, Advanced Science, 9, 2201070 (2022). [DOI: https://doi.org/10.1002/advs.202201070] 
  7. Z.L. Wang, ASC Nano, 7, 9533 (2013). [DOI: https://doi.org/10.1021/nn404614z] 
  8. J. W. Bae, M. Yeo, E. J. Shin, W. H. Park, J. E. Lee, B. U. Nam, and S. Y. Kim, RSC Advances, 5, 94919 (2015). [DOI: https://doi.org/10.1039/C5RA15304B] 
  9. M. Ito and K. Nagai, Polym. Degrad. Stab., 92, 260 (2007). [DOI: https://doi.org/10.1016/j.polymdegradstab.2006.11.003] 
  10. Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, and Z. Wang, Nature Communications, 12, 4686 (2021). [DOI: https://doi.org/10.1038/s41467-021-25046-z] 
  11. A. Takeshita, J. Igarashi-Migitaka, K. Nishiyama, H. Takahashi, Y. Takeuchi, and N. Koibuchi, Toxicol. Sci., 123, 460 (2011). [DOI: https://doi.org/10.1093/toxsci/kfr178] 
  12. C. Wu, A. C. Wang, W. Ding, H. Guo, and Z. L. Wang, Adv. Energy Mater., 9, 1802906 (2019). [DOI: https://doi.org/10.1002/aenm.201802906] 
  13. J. Luo and Z. L. Wang, EcoMat, 2, e12059 (2020). [DOI: https://doi.org/10.1002/eom2.12059] 
  14. M. Ali, T. Ueki, D. Tsurumi, and T. Hirai, Langmuir, 27, 7902 (2011). [DOI: https://doi.org/10.1021/la2009489] 
  15. J. Kim, H. Ryu, J. H. Lee, U. Khan, S. S. Kwak, H. Yoon, and S. Kim, Adv. Energy Mater., 10, 1903524 (2020). [DOI: https://doi.org/10.1002/aenm.201903524] 
  16. P. H. Daniels, J. Vinyl and Additive Technology, 15, 219 (2009). [DOI: https://doi.org/10.1002/vnl.20211]