DOI QR코드

DOI QR Code

Magnetic Force Properties of Superconducting Bulk

초전도 벌크의 자기적 특성을 위한 간편한 시스템

  • Sang Heon, Lee (Department of Electronic Engineering, Sunmoon University)
  • Received : 2022.09.27
  • Accepted : 2022.11.08
  • Published : 2023.01.01

Abstract

To improve superconductor properties, the size of the crystal grains of the superconductor should be adjusted, the amount of electricity flowing through the superconductor should be increased, and the superconductor should be designed to withstand external magnetic fields. It is necessary to control the microstructure so that many flux pinning centers are developed inside the superconductor so that defects are generated physically or chemically, and the micro secondary phase for trapped magnetic flux must be dispersed inside the superconductor. In order to measure the superconducting magnetic force of the superconducting bulk in a simplified manner, the superconducting magnetic force was analyzed using an Nd-Fe-B permanent magnet of 3.80 kG. In particular, by delaying the growth of partially melted Y2BaCuO5 particles, we devised a plan to refine Y2BaCuO5 particles to effectively improve superconducting magnetic force, and analyzed superconducting magnetic force in a single crystal YBa2Cu3O7-y superconducting bulk using a gauss meter. The melted superconducting bulk traps 80% or more of the applied magnetic field, and can be used as a bulk magnet of high magnetic field magnetization applicable to electric power equipment.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단-고온초전도마그넷기술개발사업의 지원을 받아 수행된 연구임(2022M3I9A1073924).

References

  1. N. Saho, N. Nishijima, H. Tanaka, and A. Sasaki, Phys. C: Supercond., 469, 1286 (2009). [DOI: https://doi.org/10.1016/j.physc.2009.05.134]
  2. H. Fujishiro and T. Naito, Supercond. Sci. Technol., 23, 105021 (2003). [DOI: https://doi.org/10.1088/0953-2048/23/10/105021]
  3. M. Hirakawa, S. Inadama, K. Kikukawa, E. Suzuki, H. Nakasima, Physica C: Superconductivity, 392, 773 (2003). [DOI: https://doi.org/10.1016/S0921-4534(03)01213-9]
  4. T. Nakamura, D. Tamada, Y. Yanagi, Y. Itoh, T. Nemoto, H. Utumi, and K. Kose, J. Magn. Reson., 259, 68 (2015). [DOI: https://doi.org/10.1016/j.jmr.2015.07.012]
  5. S. Gruss, G. Fuchs, G. Krabbes, P. Verges, G. Stover, K. H. Muller, J. Fink, and L. Schultz, Appl. Phys. Lett., 79, 3131 (2001). [DOI: https://doi.org/10.1063/1.1413502]
  6. D. Mendes, D. Sousa, A. C. Cerdeira, L.C.J. Pereira, A. Marques, J. Murta-Pina, A. Pronto, and I. Ferreira, Ceram. Int., 47, 381 (2021). [DOI: https://doi.org/10.1016/j.ceramint.2020.08.143]
  7. D. Volochova, K. Jurek, M. Radusovska, S. Piovarci, V. Antal, J. Kovac, M. Jirsa, and P. Diko, Physica C: Superconductivity and its Applications, 496, 14 (2014). [DOI: https://doi.org/10.1016/j.physc.2013.04.084]