DOI QR코드

DOI QR Code

Anti-oxidant activities of ethanol extract and fractions from defatted Camellia japonica L. seeds

동백 유박 에탄올추출물 및 분획물의 항산화 활성

  • Weon Pho Park (Department of Food Science, Gyeongsang National University) ;
  • Nan Kyung Kim (Department of Food Science, Gyeongsang National University) ;
  • Seok Hee Han (Department of Food Science, Gyeongsang National University) ;
  • Sanghyun Lee (Department of Plant Science and Technology, Chung-Ang University) ;
  • Ji Hyun Kim (Department of Food Science, Gyeongsang National University) ;
  • Jine Shang Choi (Department of Food Science, Gyeongsang National University)
  • Received : 2023.12.07
  • Accepted : 2023.12.13
  • Published : 2023.12.31

Abstract

The aim of this study was to investigate in vitro antioxidant activities of defatted Camellia japonica L. seeds (DCJS). The DCJS were extracted using ethanol and then fractionated with butanol (BuOH), ethyl acetate (EtOAc), chloroform, and hexane. To evaluate antioxidant activity of extract and fractions from DCJS, we investigated free radical scavenging activities such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), hydroxyl radical (OH), and superoxide anion (O2-) radicals. The five extract and fractions of DCJS dose-dependently increased DPPH, ABTS+ and O2- radical scavenging activities. The BuOH fraction of DCJS showed the highest free radical scavenging activities among other extract and fractions. The contents of total polyphenol and flavonoid in BuOH fraction of DCJS were 23.26 mg GAE/g and 32.39 mg QE/g, respectively. The polyphenol and flavonoids contents of BuOH fraction has highest than other extract and fractions. In addition, BuOH and EtOAc fraction of DCJS contained 102.37 and 165.05 ㎍/g of camelliaside B, respectively. Therefore, DCJS has higher antioxidant activity and may be useful as a natural antioxidant material.

본 연구는 동백나무(Camellia japonica L.) 유박 추출물 및 분획물의 in vitro 항산화 활성에 대해 조사하였다. 동백나무 유박은 에탄올을 사용하여 추출하였으며, 이 후 부탄올(BuOH), 에틸아세테이트(EtOAc), 클로로포름 및 헥산을 이용하여 분획물을 조제하였다. 동백 유박 추출물 및 분획물의 항산화 활성을 평가하기 위해 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), hydroxyl radical, superoxide anion (O2-) radical 소거능을 측정하였다. 동백 유박 추출물 및 분획물은 농도의존적으로 DPPH, ABTS+ 및 O2- radical 소거능을 증가시켜 항산화 활성을 나타내었다. 특히 동백 유박 BuOH 분획물은 다른 추출물 및 분획물에 비해 가장 높은 radical 소거능을 나타내었다. 동백 유박 BuOH 분획물의 총 폴리페놀 및 플라보노이드 함량은 각각 23.26 mg GAE/g 및 32.39 mg QE/g이었으며, 이는 다른 추출물 및 분획물보다 높은 수치임을 알 수 있었다. 동백 유박 BuOH 분획물 및 EtOAc 분획물의 cameliaside B 함량은 각각 102.37, 165.05 ㎍/g임을 확인하여 다른 추출물 및 분획물에 비해 높은 수치를 나타냄을 알 수 있었다. 따라서 동백 유박 추출 및 분획물 중에서 BuOH 분획물 및 EtOA c 분획물은 다른 추출 및 분획물에 비해 radical 소거능이 우수할 뿐 아니라 항산화 물질 함유량이 높아, 항산화 기능성 소재로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7): 592-607. doi: 10.1016/j.tips.2017.04.005 
  2. Jakubczyk K, Dec K, Kaldunska J, Kawczuga D, Kochman J, Janda K (2020) Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski 48(284): 124-127 
  3. Alkadi H (2020) A review on free radicals and antioxidants. infect disord drug targets. 20(1): 16-26. doi: 10.2174/1871526518666180628124323 
  4. Engwa GA, EnNwekegwa FN, Nkeh-Chungag BN (2022) Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern Ther Health Med 28(1): 114-128 
  5. Neha K, Haider MR, Pathak A, Yar MS (2019) Medicinal prospects of antioxidants: A review. Eur J Med Chem 178: 687-704. doi: 10.1016/j.ejmech.2019.06.010 
  6. Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE (2022) Health benefits of polyphenols: A concise review. J Food Biochem 46(10): e14264. doi: 10.1111/jfbc.14264 
  7. Yoon IS, Park DH, Kim JE, Yoo JC, Bae MS, Oh DS, Shim JH, Choi CY, An KW, Kim EI, Kim GY, Cho SS (2017) Identification of the biologically active constituents of Camellia japonica leaf and antihyperuricemic effect in vitro and in vivo. Int J Mol Med 39(6): 1613-1620. doi: 10.3892/ijmm.2017.2973 
  8. Yoshikawa M, Morikawa T, Asao Y, Fujiwara E, Nakamura S, Matsuda H (2007) Medicinal flowers. XV. The structures of noroleanane- and oleanane-type triterpene oligoglycosides with gastroprotective and platelet aggregation activities from flower buds of Camellia japonica. Chem Pharm Bull 55: 606-612. doi: 10.1248/cpb.55.606 
  9. Piao MJ, Yoo ES, Koh YS, Kang HK, Kim J, Kim YJ, Kang HH, Hyun JW (2011) Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes. Int J Mol Sci 12(4): 2618-2630. doi: 10.3390/ijms12042618 
  10. Tian W, Zhao J, Choo BK, Kim IS, Ahn D, Tae HJ, Islam MS, Park BY (2021) Camellia japonica diminishes acetaminophen-induced acute liver failure by attenuating oxidative stress in mice. Environ Sci Pollut Res Int 28(40): 57192-57206. doi: 10.1007/s11356-021-14530-0 
  11. Ha SY, Jung JY, Yang JK (2021) Camellia japonica essential oil inhibits α-MSH-induced melanin production and tyrosinase activity in B16F10 melanoma cells. Evid Based Complement Alternat Med 2021: 6328767. doi: 10.1155/2021/6328767 
  12. Lee SY, Bae CS, Seo NS, Na CS, Yoo HY, Oh DS, Bae MS, Kwon MS, Cho SS, Park DH (2019) Camellia japonica oil suppressed asthma occurrence via GATA-3 & IL-4 pathway and its effective and major component is oleic acid. Phytomedicine 57: 84-94. doi: 10.1016/j.phymed.2018.12.004 
  13. Kim S, Jung E, Shin S, Kim M, Kim YS, Lee J, Park D (2012) Antiinflammatory activity of Camellia japonica oil. BMB Rep 45(3): 177-182. doi: 10.5483/BMBRep.2012.45.3.177 
  14. Kang SK, Kim YD, Choi OJ (1998) Proximate, saponin, and amino acid compositions in Camellia (Camellia japonica L.) seeds and defatted camellia seeds. J Korean Soc Food Sci Nutr 27(2): 227-231 
  15. Ko J, Rho T, Yoon KD (2020) Kaempferol tri- and tetrasaccharides from Camellia japonica seed cake and their inhibitory activities against matrix metalloproteinase-1 secretion using human dermal fibroblasts. Carbohydr Res 495: 108101. doi: 10.1016/j.carres.2020.108101 
  16. Kang SK, Kim YD, Choi OJ (1998) Antimicrobial activity of defatted camellia (Camellia japonica L.) seeds extract. J Korean Soc Food Sci Nutr 27(2): 232-238 
  17. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshica T, Okuda T (1989) Effects of the interation of tannins with coexisting substances, VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37: 2016-2021 
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10): 1231-1237. doi: 10.1016/s0891-5849(98)00315-3 
  19. Kim JW, Minamikawa T (1997) Hydroxy radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotechnol Biochem 61: 118-123. doi: 10.1271/bbb.61.118 
  20. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Ciophys Res Commun 46(2): 849-854. doi: 10.1016/s0006-291x(72)80218-3 
  21. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243 
  22. Moreno MI, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. doi: 10.1016/S0378-8741(99)00189-0 
  23. Lee HS, Choi JH, Cui L, Li Y, Yang JM, Yun JJ, Jung JE, Choi W, Yoon KC (2017) Anti-inflammatory and antioxidative effects of camellia japonica on human corneal epithelial cells and experimental dry eye: in vivo and in vitro study. Invest Ophthalmol Vis Sci 58(2): 1196-1207. doi: 10.1167/iovs.16-20634 
  24. Mizutani T, Masaki H (2014) Anti-photoaging capability of antioxidant extract from Camellia japonica leaf. Exp Dermatol 23: 23-26. doi: 10.1111/exd.12395 
  25. Lu W, Xv L, Wen J (2019) Protective effect of extract of the Camellia japonica L. on cerebral ischemia-reperfusion injury in rats. Arq Neuropsiquiatr 77(1): 39-46. doi: 10.1590/0004-282X20180146 
  26. Kim JH, Yang H, Kim KK (2022) Camellia japonica root extract increases antioxidant genes by induction of NRF2 in hela cells. Plants (Basel) 11(21): 2914. doi: 10.3390/plants11212914 
  27. Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4): 412-422. doi: 10.1007/s13197-011-0251-1 
  28. Shin JH, Lee HG, Kang MJ, Lee SJ, Sung NJ (2010) Anti-oxidant activity of solvent fraction from black garlic. J Korean Soc Food Sci Nutr 39(7): 933-940. doi: 10.3746/jkfn.2010.39.7.933 
  29. Kwak CS, Choi HI (2015) In vitro antioxidant and anti-inflammatory activities of ethanol extract and sequential fractions of flowers of Prunus persica in LPS-stimulated RAW 264.7 macrophages. J Korean Soc Food Sci Nutr 44: 1439-1449. doi: 10.3746/jkfn.2015.44.10.1439 
  30. Zhao Z (2023) Hydroxyl radical generations form the physiologically relevant Fenton-like reactions. Free Radic Biol Med 208: 510-515. doi: 10.1016/j.freeradbiomed.2023.09.013 
  31. Chiste RC, Freitas M, Mercadante AZ, Fernandes E (2015) Superoxide anion radical: generation and detection in cellular and non-cellular systems. Curr Med Chem 22(37): 4234-4256. doi:10.2174/0929867322666151029104311 
  32. Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1): 1-37. doi: 10.1007/s00204-015-1579-5 
  33. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12): 1231-1246. doi: 10.3390/nu2121231 
  34. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383: 132531. doi: 10.1016/j.foodchem.2022.132531 
  35. Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53(2): 75-100. doi: 10.1007/s12013-009-9043-x 
  36. Pereira AG, Garcia-Perez P, Cassani L, Chamorro F, Cao H, Barba FJ, Simal-Gandara J, Prieto MA (2022) Camellia japonica: A phytochemical perspective and current applications facing its industrial exploitation. Food Chem X 13: 100258. doi: 10.1016/j.fochx.2022.100258 
  37. Ko J, Rho T, Yoon KD (2020) Kaempferol tri- and tetrasaccharides from Camellia japonica seed cake and their inhibitory activities against matrix metalloproteinase-1 secretion using human dermal fibroblasts. Carbohydr Res 495: 108101. doi:10.1016/j.carres.2020.108101 
  38. Sekine T, Arita J, Yamaguchi A, Saito K, Okonogi S, Morisaki N, Iwasaki S, Murakoshi I (1991) Two flavonol glycosides from seeds of Camellia sinensis. Phytochemistry 30(3): 991-995. doi: 10.1016/0031-9422(91)85293-9 
  39. Kang JY, Youn YD, Kim BK (2022) Validation of HPLC-DAD method for quantitative analysis of camelliaside B in Camellia japonica seed extract. J Agric Life Sci 56(5): 161-169 
  40. Nagata T, Tsushida T, Hamaya E, Enoki N, Manabe S, Nishino C (1985) Camellidins, antifungal saponins isolated from Camellia japonica. Agric Biol Chem 49(4): 1181-1186 
  41. Rho T, Choi SJ, Kil HW, Ko J, Yoon KD (2019) Separation of nine novel triterpene saponins from Camellia japonica seeds using high-performance countercurrent chromatography and reversed-phase high-performance liquid chromatography. Phytochem Anal 30(2): 226-236. doi: 10.1002/pca.2808 
  42. Matsuda H, Morikawa T, Nakamura S, Muraoka O, Yoshikawa M (2023) New biofunctional effects of oleanane-type triterpene saponins. J Nat Med 77(4): 644-664. doi: 10.1007/s11418-023-01730-w. 
  43. Hu JL, Nie SP, Huang DF, Li C, Xie MY (2012) Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity. Int J food Sci Technol 47(8): 1676-1687 
  44. Saenjum C, Pattananandecha T, Nakagawa K (2020) Detection of antioxidant phytochemicals isolated from Camellia japonica seeds using HPLC and EPR imaging. Antioxidants 9(6):493. doi: 10.3390/antiox9060493