References
- Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7): 592-607. doi: 10.1016/j.tips.2017.04.005
- Jakubczyk K, Dec K, Kaldunska J, Kawczuga D, Kochman J, Janda K (2020) Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski 48(284): 124-127
- Alkadi H (2020) A review on free radicals and antioxidants. infect disord drug targets. 20(1): 16-26. doi: 10.2174/1871526518666180628124323
- Engwa GA, EnNwekegwa FN, Nkeh-Chungag BN (2022) Free radicals, oxidative stress-related diseases and antioxidant supplementation. Altern Ther Health Med 28(1): 114-128
- Neha K, Haider MR, Pathak A, Yar MS (2019) Medicinal prospects of antioxidants: A review. Eur J Med Chem 178: 687-704. doi: 10.1016/j.ejmech.2019.06.010
- Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE (2022) Health benefits of polyphenols: A concise review. J Food Biochem 46(10): e14264. doi: 10.1111/jfbc.14264
- Yoon IS, Park DH, Kim JE, Yoo JC, Bae MS, Oh DS, Shim JH, Choi CY, An KW, Kim EI, Kim GY, Cho SS (2017) Identification of the biologically active constituents of Camellia japonica leaf and antihyperuricemic effect in vitro and in vivo. Int J Mol Med 39(6): 1613-1620. doi: 10.3892/ijmm.2017.2973
- Yoshikawa M, Morikawa T, Asao Y, Fujiwara E, Nakamura S, Matsuda H (2007) Medicinal flowers. XV. The structures of noroleanane- and oleanane-type triterpene oligoglycosides with gastroprotective and platelet aggregation activities from flower buds of Camellia japonica. Chem Pharm Bull 55: 606-612. doi: 10.1248/cpb.55.606
- Piao MJ, Yoo ES, Koh YS, Kang HK, Kim J, Kim YJ, Kang HH, Hyun JW (2011) Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes. Int J Mol Sci 12(4): 2618-2630. doi: 10.3390/ijms12042618
- Tian W, Zhao J, Choo BK, Kim IS, Ahn D, Tae HJ, Islam MS, Park BY (2021) Camellia japonica diminishes acetaminophen-induced acute liver failure by attenuating oxidative stress in mice. Environ Sci Pollut Res Int 28(40): 57192-57206. doi: 10.1007/s11356-021-14530-0
- Ha SY, Jung JY, Yang JK (2021) Camellia japonica essential oil inhibits α-MSH-induced melanin production and tyrosinase activity in B16F10 melanoma cells. Evid Based Complement Alternat Med 2021: 6328767. doi: 10.1155/2021/6328767
- Lee SY, Bae CS, Seo NS, Na CS, Yoo HY, Oh DS, Bae MS, Kwon MS, Cho SS, Park DH (2019) Camellia japonica oil suppressed asthma occurrence via GATA-3 & IL-4 pathway and its effective and major component is oleic acid. Phytomedicine 57: 84-94. doi: 10.1016/j.phymed.2018.12.004
- Kim S, Jung E, Shin S, Kim M, Kim YS, Lee J, Park D (2012) Antiinflammatory activity of Camellia japonica oil. BMB Rep 45(3): 177-182. doi: 10.5483/BMBRep.2012.45.3.177
- Kang SK, Kim YD, Choi OJ (1998) Proximate, saponin, and amino acid compositions in Camellia (Camellia japonica L.) seeds and defatted camellia seeds. J Korean Soc Food Sci Nutr 27(2): 227-231
- Ko J, Rho T, Yoon KD (2020) Kaempferol tri- and tetrasaccharides from Camellia japonica seed cake and their inhibitory activities against matrix metalloproteinase-1 secretion using human dermal fibroblasts. Carbohydr Res 495: 108101. doi: 10.1016/j.carres.2020.108101
- Kang SK, Kim YD, Choi OJ (1998) Antimicrobial activity of defatted camellia (Camellia japonica L.) seeds extract. J Korean Soc Food Sci Nutr 27(2): 232-238
- Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshica T, Okuda T (1989) Effects of the interation of tannins with coexisting substances, VI. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37: 2016-2021 https://doi.org/10.1248/cpb.37.2016
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9-10): 1231-1237. doi: 10.1016/s0891-5849(98)00315-3
- Kim JW, Minamikawa T (1997) Hydroxy radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotechnol Biochem 61: 118-123. doi: 10.1271/bbb.61.118
- Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Ciophys Res Commun 46(2): 849-854. doi: 10.1016/s0006-291x(72)80218-3
- Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243 https://doi.org/10.1016/S0021-9258(18)88697-5
- Moreno MI, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. doi: 10.1016/S0378-8741(99)00189-0
- Lee HS, Choi JH, Cui L, Li Y, Yang JM, Yun JJ, Jung JE, Choi W, Yoon KC (2017) Anti-inflammatory and antioxidative effects of camellia japonica on human corneal epithelial cells and experimental dry eye: in vivo and in vitro study. Invest Ophthalmol Vis Sci 58(2): 1196-1207. doi: 10.1167/iovs.16-20634
- Mizutani T, Masaki H (2014) Anti-photoaging capability of antioxidant extract from Camellia japonica leaf. Exp Dermatol 23: 23-26. doi: 10.1111/exd.12395
- Lu W, Xv L, Wen J (2019) Protective effect of extract of the Camellia japonica L. on cerebral ischemia-reperfusion injury in rats. Arq Neuropsiquiatr 77(1): 39-46. doi: 10.1590/0004-282X20180146
- Kim JH, Yang H, Kim KK (2022) Camellia japonica root extract increases antioxidant genes by induction of NRF2 in hela cells. Plants (Basel) 11(21): 2914. doi: 10.3390/plants11212914
- Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4): 412-422. doi: 10.1007/s13197-011-0251-1
- Shin JH, Lee HG, Kang MJ, Lee SJ, Sung NJ (2010) Anti-oxidant activity of solvent fraction from black garlic. J Korean Soc Food Sci Nutr 39(7): 933-940. doi: 10.3746/jkfn.2010.39.7.933
- Kwak CS, Choi HI (2015) In vitro antioxidant and anti-inflammatory activities of ethanol extract and sequential fractions of flowers of Prunus persica in LPS-stimulated RAW 264.7 macrophages. J Korean Soc Food Sci Nutr 44: 1439-1449. doi: 10.3746/jkfn.2015.44.10.1439
- Zhao Z (2023) Hydroxyl radical generations form the physiologically relevant Fenton-like reactions. Free Radic Biol Med 208: 510-515. doi: 10.1016/j.freeradbiomed.2023.09.013
- Chiste RC, Freitas M, Mercadante AZ, Fernandes E (2015) Superoxide anion radical: generation and detection in cellular and non-cellular systems. Curr Med Chem 22(37): 4234-4256. doi:10.2174/0929867322666151029104311
- Valko M, Jomova K, Rhodes CJ, Kuca K, Musilek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1): 1-37. doi: 10.1007/s00204-015-1579-5
- Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12): 1231-1246. doi: 10.3390/nu2121231
- Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B (2022) Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383: 132531. doi: 10.1016/j.foodchem.2022.132531
- Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53(2): 75-100. doi: 10.1007/s12013-009-9043-x
- Pereira AG, Garcia-Perez P, Cassani L, Chamorro F, Cao H, Barba FJ, Simal-Gandara J, Prieto MA (2022) Camellia japonica: A phytochemical perspective and current applications facing its industrial exploitation. Food Chem X 13: 100258. doi: 10.1016/j.fochx.2022.100258
- Ko J, Rho T, Yoon KD (2020) Kaempferol tri- and tetrasaccharides from Camellia japonica seed cake and their inhibitory activities against matrix metalloproteinase-1 secretion using human dermal fibroblasts. Carbohydr Res 495: 108101. doi:10.1016/j.carres.2020.108101
- Sekine T, Arita J, Yamaguchi A, Saito K, Okonogi S, Morisaki N, Iwasaki S, Murakoshi I (1991) Two flavonol glycosides from seeds of Camellia sinensis. Phytochemistry 30(3): 991-995. doi: 10.1016/0031-9422(91)85293-9
- Kang JY, Youn YD, Kim BK (2022) Validation of HPLC-DAD method for quantitative analysis of camelliaside B in Camellia japonica seed extract. J Agric Life Sci 56(5): 161-169 https://doi.org/10.14397/jals.2022.56.6.161
- Nagata T, Tsushida T, Hamaya E, Enoki N, Manabe S, Nishino C (1985) Camellidins, antifungal saponins isolated from Camellia japonica. Agric Biol Chem 49(4): 1181-1186 https://doi.org/10.1271/bbb1961.49.1181
- Rho T, Choi SJ, Kil HW, Ko J, Yoon KD (2019) Separation of nine novel triterpene saponins from Camellia japonica seeds using high-performance countercurrent chromatography and reversed-phase high-performance liquid chromatography. Phytochem Anal 30(2): 226-236. doi: 10.1002/pca.2808
- Matsuda H, Morikawa T, Nakamura S, Muraoka O, Yoshikawa M (2023) New biofunctional effects of oleanane-type triterpene saponins. J Nat Med 77(4): 644-664. doi: 10.1007/s11418-023-01730-w.
- Hu JL, Nie SP, Huang DF, Li C, Xie MY (2012) Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity. Int J food Sci Technol 47(8): 1676-1687 https://doi.org/10.1111/j.1365-2621.2012.03020.x
- Saenjum C, Pattananandecha T, Nakagawa K (2020) Detection of antioxidant phytochemicals isolated from Camellia japonica seeds using HPLC and EPR imaging. Antioxidants 9(6):493. doi: 10.3390/antiox9060493