DOI QR코드

DOI QR Code

Characterization of antioxidant and anti-inflammatory activities in the grains of collected Sorghum bicolor varieties

  • Ji Won Seo (Interdisciplinary Program in Smart Science, Kangwon National University) ;
  • Jae Geun Lee (Research Institute of Biotechnology, HwajinBioCosmetic) ;
  • Bimal Kumar Ghimire (Department of Applied Life Science, Konkuk University) ;
  • Myong Jo Kim (Department of Applied Plant Sciences, Division of Bioresource Sciences, Kangwon National University) ;
  • Chang Yeon Yu (Department of Applied Plant Sciences, Division of Bioresource Sciences, Kangwon National University) ;
  • Eun Soo Seong (Department of Applied Plant Sciences, Division of Bioresource Sciences, Kangwon National University)
  • Received : 2023.05.02
  • Accepted : 2023.05.22
  • Published : 2023.12.31

Abstract

The current study evaluated the presence and concentration of health-promoting phenolic antioxidants in sorghum seed accessions from seven regions in three different countries (Uzbekistan, Myanmar, and the United States). The free radical scavenging activity using the 2,2-diphenyl-1-picrylhydrazyl assay was 13.10±2.37 ㎍/mL in the Uzbekistan sorghum seed extracts, demonstrating the highest antioxidant activity. Additionally, the total phenol content was the highest in the Uzbekistan sorghum seed extracts [157.87±4.04 mg GAE/g (gallic acid equivalents per gram)]. The total flavonoid content was 12.69±0.72 mg QE/g (quercetin equivalents per gram) and represents the highest value in the Myanmar collection. The Uzbekistan collection demonstrated the greatest potential for whitening activity, with the tyrosinase inhibition rate of 79.20±4.15%. The wrinkle improvement function using elastase also showed the highest anti-aging activity of 55.85±4.78% in the same seed extract. The Uzbekistan seed extract had the highest NO production inhibitory activity of 144.35±4.55%. We conclude from these results that the Uzbekistan sorghum seed has excellent antioxidant activity, content of various functional ingredients, and anti-inflammatory activity.

Keywords

Acknowledgement

This study was supported by the Bioherb Research Institute, Kangwon National University, Republic of Korea.

References

  1. Dahlberg J, Berenji J, Sikora V, Latkovic D (2012) Assessing sorghum [Sorghum bicolor (L) Moench] germplasm for new traits: Food, fuels & unique uses. Maydica 56: 85-92
  2. Dicko MH, Gruppen H, Traore AS, Voragen AG, Van Berkel WJ (2006) Sorghum grain as human food in africa: Relevance of content of starch and amylase activities. African J Biotech 5: 384-395
  3. Costa LMD, Moura NFD, Marangoni C, Mendes CE, Teixeira ADO (2010) Atividade antioxidante de pimentas do genero capsicum. Food Sci Tech 30: 51-59. doi: 10.1590/S0101-20612009005000004
  4. Ghimire BK, Seo JW, Yu CY, Kim SH, Chung IM (2021) Comparative study on seed characteristics, antioxidant activity, and total phenolic and flavonoid contents in accessions of Sorghum bicolor (L.) Moench. Molecules 26: 3964. doi: 10.3390/molecules26133964
  5. Vita JA (2005) Polyphenols and cardiovascular disease: Effects on endothelial and platelet function. Am J Clin Nutr 81: 292S-297S. doi:10.1093/ajcn/81.1.292S
  6. Kil HY, Seong ES, Ghimire BK, Chung IM, Kwon SS, Goh EJ, Kim MJ, Lim JD, Lee DK, Yu CY (2009) Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem 115: 1234-1239. doi:10.1016/j.foodchem.2009.01.032
  7. Yang L, Allred KF, Geera B, Allred CD, Awika JM (2012) Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr Cancer 64: 419-427. doi: 10.1080/01635581.2012.657333
  8. Lin P, Wong JH, Ng TB, Ho VSM, Xia L (2013) A sorghum xylanase inhibitor-like protein with highly potent antifungal, antitumor and HIV-1 reverse transcriptase inhibitory activities. Food Chem 141: 2916-2922. doi: 10.1016/j.foodchem.2013.04.013
  9. Cardoso LM, Pinheiro SS, Martino HSD, Pinheiro-Sant'Ana HM (2017) Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr 57: 372-390. doi: 10.1080/10408398.2014.887057
  10. Salawu SO, Bester MJ, Duodu KG (2014) Phenolic composition and bioactive properties of cell wall preparations and whole grains of selected cereals and legumes. J Food Chem 38: 62-72. doi: 10.1111/jfbc.12026
  11. Luthria DL, Liu K (2013) Localization of phenolic acids and antioxidant activity in sorghum kernels. J Func Foods 5: 1751-1760. doi: 10.1016/j.jff.2013.08.001
  12. Chavez DWH, Ascheri JLR, Carvalho CWP, Godoy RLO, Pacheco S (2017) Sorghum and roasted coffee blends as a novel extruded product: Bioactive compounds and antioxidant capacity. J Func Foods 29: 93-103. doi: 10.1016/j.jff.2016.12.012
  13. Wu G, Johnson SK, Bornman JF, Bennett SJ, Fang Z (2017) Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments. Food Chem 214: 199-207. doi: 10.1016/j.foodchem.2016.07.089
  14. Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65: 1199-1221. doi: 10.1016/j.phytochem.2004.04.001
  15. Dykes L, Rooney LW, Waniska RD, Rooney WL (2005) Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J Agri Food Chem 53: 6813-6818. doi: 10.1021/jf050419e
  16. Dykes L, Rooney WL, Rooney LW (2013) Evaluation of phenolics and antioxidant activity of black sorghum hybrids. J Cereal Sci 58: 278-283. doi: 10.1016/j.jcs.2013.06.006
  17. Jakobek L (2015) Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 175: 556-567. doi: 10.1016/j.foodchem.2014.12.013
  18. Dominguez-Avila J, Wall-Medrano A, Velderrain-Rodriguez GR, Chen CYO, Salazar-Lopez NJ, Robles-Sanchez M, Gonzalez-Aguilar GA (2017) Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct 8: 15-38. doi: 10.1039/C6FO01475E
  19. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012: 936486. doi: 10.1155/2012/936486
  20. Kim DW, Baek TS, Kim YJ, Choi SK, Lee DW (2016) Moisturizing effect of jellyfish collagen extract. J Soc Cosmet Sci Korea 42: 153-162
  21. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 https://doi.org/10.1038/1811199a0
  22. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-41. doi: 10.1021/jf950190a
  23. Duval B, Shetty K (2001) The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J Food Biochem 25: 361-377. doi: 10.1111/j.1745-4514.2001.tb00746.x
  24. Moreno MIN, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharm 71: 109-114. doi: 10.1016/S0378-8741(99)00189-0
  25. Lako J, Trenerry VC, Wahlqvist M, Wattanapenpaiboon N, Sotheeswarana S, Premier R (2007) Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem 101: 1727-1741. doi: 10.1016/j.foodchem.2006.01.031
  26. Bernard P, Berthon JY (2000) Resveratrol: An original mechanism on tyrosinase inhibition. Int J Cosmet Sci 22: 219-226. doi: 10.1046/j.1467-2494.2000.00019.x
  27. Cannell RJP, Kellam SJ, Owsianka AM, Walker JM (1988) Results of a large scale screen of microalgae for the production of protease inhibitors. Planta Med 54: 10-14. doi: 10.1055/s-2006-962319
  28. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. doi: 10.1016/0022-1759(83)90303-4
  29. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126: 131-138. doi: 10.1016/0003-2697(82)90118-X
  30. Kim SM, Cho YS, Sung SK (2001) The antioxidant ability and nitrite scavenging ability of plant extracts. Kor J Food Sci Technol 33: 626-632
  31. Nieva MM, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. doi: 10.1016/S0378-8741(99)00189-0
  32. Im DY, Pyo BS, Kim SM, Lee KI (2017) Measurement of the antioxidative properties of extract from medicinal plants using an on-line HPLC-DPPH assay. J Life Sci 27: 44-49 https://doi.org/10.5352/JLS.2017.27.1.44
  33. Lee KH, Kim HJ, Lee SK, Park HY, Sim EY, Cho DH, Oh SK, Lee JH, Ahn EK, Woo KS (2017) Effect of cooking methods on cooking and antioxidant characteristics of rice supplemented with different amounts of germinated brown rice. Kor J Food Sci Technol 49: 311-317
  34. Kim SK, Jung GH, Lee JE, Lee BK, Woo KS (2018) Changes in physicochemical characteristics of sorghum among different varieties and at different harvest stages after heading. Kor J Food Sci Technol 50: 260-266
  35. Sharanagat VS, Suhag R, Anand P, Deswal G, Kumar R, Chaudhary A, Singh L, Kushwah OS, Mani S, Kumar Y, Nema PK (2019) Physicofunctional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. J Cereal Sci 85: 111-119. doi: 10.1016/j.jcs.2018.11.013
  36. Middleton E, Kandaswami C (1994) Potential health-promoting properties of citrus flavonoids. Food Technol 48: 115-119
  37. Chung K, Jo H, Yoon J, Song BC, An JH (2014) Free radical-scavenging activities of Amaranth (Amaranthus spp. L.) seed extracts. Food Eng Prog 18: 116-123 . doi: 10.13050/foodengprog.2014.18.2.116
  38. Seo JH, Jeong YJ, Shin SR, Kim KS (2000) Effects of tannins from astringent persimmons in alcohol fermentation for persimmon vinegars. J Kor Soc Food Sci Nutr 29: 407-411
  39. Rao S, Santhakumar AB, Chinkwo KA, Wu G, Johnson SK, Blanchard CL (2018) Characterization of phenolic compounds and antioxidant activity in 2 sorghum grains. J Cereal Sci 84: 103-111. doi: 10.1016/j.jcs.2018.07.013
  40. Jiang Y, Zhang H, Qi W, Wu G (2020) Structural characterization and antioxidant activity of condensed tannins fractionated from sorghum grain. J Cereal Sci 92: 102918. doi: 10.1016/j.jcs.2020.102918
  41. Hu C, Zawistowski J, Ling W, Kitts DD (2003) Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J Agric Food Chem 51: 5271-5277. doi: 10.1021/jf034466n
  42. Yang B, Zhao M, Jiang Y (2008) Optimization of tyrosinase inhibition activity of ultrasonic-extracted polysaccharides from longan fruit pericarp. Food Chem 110: 294-300. doi: 10.1016/j.foodchem.2008.01.067
  43. Kim HJ, Woo KS, Lee JY, Choe ME, Lee H, Lee YY, Lee BW, Kim M, Kang MS (2020) Physicochemical properties, functional components, and physiological activities of Sorghum cultivars. J Korean Soc Food Sci Nutr 49: 1349-1356. doi: 10.3746/jkfn.2020.49.12.1349
  44. Byun MW, Jo C, Jeon TW, Hong CH (2004) Effects of gamma irradiation on color characteristics and biological activities of extracts of Lonicera japonica (Japanese honeysuckle) with methanol and acetone. LWT?Food Sci Technol 37: 29-33. doi: 10.1016/S0023-6438(03)00121-X
  45. Yoo JM, Kang YK, Pyo HB, Choung ES, Park SY, Choi JH, Han GJ, Lee CH, Kim TJ (2010) Anti-wrinkle effects of Korean rice wine cake on human fibroblast. J Life Sci 20: 1838-1843 https://doi.org/10.5352/JLS.2010.20.12.1838
  46. Lee I, Park, B, Kim J, Moon J, Kim D (2018) In vitro evaluation of biological activities of Jeju island plants mixture. J Invest Cosmetol 14: 39-45 https://doi.org/10.15810/jic.2018.14.1.005
  47. Das UN (2010) Cyclooxygenase (COX), lipoxygenase (LO) pathways and generation of lipoxins, resolvins, protections and maresins. Molecular Basis of Health and Disease, N. D. Undurti, Ed., Springer Science Business Media BV, Dordrecht, Holland 4: 59-61
  48. Woo HS, Lee SM, Heo JD, Lee M, Kim Y, Kim DW (2018) Anti-inflammatory activity of extracts of Hovenia dulcis on lipopolysaccharides-stimulated RAW264.7 Cells. Kor J Plant Res 31: 466-477. doi: 10.7732/kjpr.2018.31.5.466