DOI QR코드

DOI QR Code

Anti-inflammatory effect of Althaea rosea L. Callus extract by applying biorenovation

생물전환 기법을 적용한 접시꽃 callus 추출물의 항염증 활성

  • Yeon-Su Koo (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Tae-Jin Park (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Jung-Hwan Kim (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Seung-Young Kim (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
  • Received : 2023.01.02
  • Accepted : 2023.01.19
  • Published : 2023.12.31

Abstract

Biorenovation is a biotransformation method that converts the structure of chemical compounds and natural product through biocatalytic metabolism of microorganism and could enhance biological effectiveness and mitigate cytotoxicity compared to its substrates. Althaea rosea L. has been used as oriental medicine and is known for physiological efficacies such as antiurolithiatic, anti-inflammatory, and anti-cancer activities. A. rosea L. callus, the plant tissue grown to protect its wound, has been reported to have antioxidant and whitening effects. However, mechanisms of its other activity such as inflammation have not yet been investigated. In this study, we extracted A. rosea L. callus (AR) and produced biorenovated AR (ARBR), and then analyzed anti-inflammatory effect in Lipopolysaccharide-induced RAW 264.7 macrophage at 50, 100, 200 ㎍/mL of ARBR. As a result of inhibition test of nitric oxide production, it was found that ARBR was superior to AR without apparent toxicity. Furthermore, ARBR significantly inhibited production of prostaglandin E2, inducible nitric oxide synthase, cyclooxygenase-2 and pro-inflammatory cytokines including Tumor necrosis factor-α, Interleukin-6, Interleukin-1β in a concentration-dependent manner. In conclusion, we suggest that ARBR could regulate the excessive inflammatory response to an appropriate level and be a promising material for functional cosmetics and pharmaceuticals.

Biorenovation은 미생물의 생체 촉매 대사를 통해 단일 화합물 또는 천연물을 생물 전환시켜 약리학적 효능을 증진시키고, 세포에 대한 독성을 완화시키는 기술이다. 접시꽃은 예로부터 한약으로 사용되어 왔으며, 항염증, 항암 등 다양한 생리학적 효능이 있다고 보고되고 있다. 또한, 본 연구에서 사용된 접시꽃캘러스는 손상부를 보호하기 위해 발달한 미분화 식물 조직으로, 항산화 및 미백 효과가 있는 것으로 보고되었지만 염증과 같은 다른 활성에 대한 연구는 아직 보고되지 않았다. 본 연구에서는 바이오리노베이션을 접시꽃 캘러스 추출물(ARBR)에 적용하여 RAW 264.7 대식세포에 대한 생물전환 추출물의 항염증 효능을 연구하였다. 그 결과 측정 농도(50, 100, 200 ㎍/mL)에서 세포에 대한 독성이 없었으며, 산화질소 생성 억제에 대한 효능이 기존 추출물에 비해 증진되었다. 또한, 프로스타글란딘 E2와 전염증성 사이토카인, 고리형 산소화 효소, 산화질소의 유도 합성효소의 생성을 농도 의존적으로 억제하는 경향을 보였다. 이러한 결과를 바탕으로 ARBR이 과도하게 발현된 염증반응을 조절하여 기능성 화장품과 의약품의 소재로서 잠재력을 가지고 있음을 시사한다.

Keywords

Acknowledgement

본 연구는 보건복지부의 재원으로 한국보건산업진흥원의 보건의료기술연구개발사업 지원에 의하여 이루어진 연구결과입니다 (과제고유번호: HP20C0231).

References

  1. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin?1β generation. Clin Exp Immunol 147: 227-235. doi:10.1111/j.1365-2249.2006.03261.x
  2. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140: 771-776. doi: 10.1016/j.cell.2010.03.006
  3. Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15: 505-522. doi: 10.1038/s41569-018-0064-2
  4. Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cellular Signalling 13: 85-94. doi: 10.1016/S0898-6568(00)00149-2
  5. Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48: 412-422. doi: 10.1007/s13197-011-0251-1
  6. Jin M, Suh SJ, Yang JH, Lu Y, Kim SJ, Kwon S, Jo TH, Kim JW, Park YI, Ahn GW, Lee CK, Kim CH, Son JK, Son KH, Chang HW (2010) Anti-inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via NF-kappaB and ERK1/2 inactivation. Food Chem Toxicol 48: 3073-3079. doi: 10.1016/j.fct.2010.07.048
  7. Moon JS, Hur J, Chun SE, Kim JH, Park SG, Kwon JE, Woo CH, Kwak IS, Han TH, Kim KM (2003) The effect of early escharectomy on pro- and antiinflammatory cytokines in major burn patients. Korean J Anesthesiol 45: 232-237. doi: 10.4097/kjae.2003.45.2.232
  8. Stuehr DJ (1997) Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol 37: 339-359. doi: 10.1146/annurev.pharmtox.37.1.339
  9. Villanueva C, Giulivi C (2010) Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radical Biology and Medicine 49: 307-316. doi: 10.1016/j.freeradbiomed.2010.04.004
  10. Vane J R, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA (1994) Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci 91: 2046-2050. doi: 10.1073/pnas.91.6.2046
  11. Giuliano F, Warner TD (2002) Origins of prostaglandin E2: involvements of cyclooxygenase (COX)-1 and COX-2 in human and rat systems. J Pharmacol Exp Ther 303: 1001-1006. doi: 10.1124/jpet.102.041244
  12. Ji JD, Lee YH, Song GG (2004) Prostaglandin E2 (PGE2): Roles in Immune Responses and Inflammation. J Korean Rheum Assoc 11: 307-316
  13. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metabolism 13: 11-22. doi: 10.1016/j.cmet.2010.12.008
  14. Cho HY, Yang JL, Noh KH, Kim JJ, Kim YH, Huh KH, Song YS (2007) Anti-atherogenic effect of isoflavone through hypolipidemic, antioxidative and anti-inflammatory actions in C57BL/6 mice. J Korean Soc Food Sci Nutr 36: 276-283. doi: 10.3746/jkfn.2007.36.3.276
  15. Shin JA, Jeong JM (2020) Anti-inflammatory effects of BENDU381 in lipopolysaccharide-stimulated RAW264.7 Cells. J Korean Soc Food Sci Nutr 49: 1202-1211 https://doi.org/10.3746/jkfn.2020.49.11.1202
  16. Ishikawa F, Haushalter RW, Burkart MD (2012) Dehydratase-specific probes for fatty acid and polyketide synthases. American Chemical Society 134: 769-772. doi: 10.1021/ja2082334
  17. Imran M, Salehi B, Sharifi-Rad J, Gondal AT, Saeed F, Imran A, Shahbaz M, Fokou TVP, Arshad UM, Khan H, Guerreiro GS, Martins N, Estevinho ML (2019) Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 24(12): 2277. doi: 10.3390/molecules24122277
  18. Kim DH, Yang MC, Lee KH, Kim KH, Lee KR (2007) Phenolic Constituents of Althaea rosea Canival. Kor J Pharmacogn 38(3): 222-226
  19. Ammara NM, El-Kashouryb ESA, El-Kassema LTA, El-Hakeemc REA (2013) Evaluation of the phenolic content and antioxidant potential of Althaea rosea cultivated in Egypt. J Arab Soc Med Res 8: 48-52. doi:10.4103/1687-4293.123786
  20. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25: 3159-3173. doi: 10.1105/tpc.113.116053
  21. Kim IS, Lee SH (2005) Trichome type and development in leaves of Althaea rosea. Applied Microscopy 35: 97-104
  22. Kim DH, Yang MC, Lee KH, Kim KH, Lee KR (2007) Phenolic constituents of Althaea rosea Canival. Korean J Pharmacogn 38: 222-226
  23. Kang E (2001) Effect of germination condition, priming and plant growth regulator on the seed germination of Althaea rosea. Dissertation, University of Korea
  24. Neely D (1988) Tree wound closure. Arboriculture 14: 148-152 https://doi.org/10.48044/jauf.1988.037
  25. Ogita S (2015) Plant cell, tissue and organ culture: the most flexible foundations for plant metabolic engineering applications. Nat Prod Commun 10: 815-820 https://doi.org/10.1177/1934578X1501000527
  26. Kim SY, Kim HI, Ryu SH, Park JG, Jo SY, Kim JD, Moh SH (2018) A study on the anti-aging effects of Leontopodium alpinum callus culture extract. The Korean Society of Cosmetics and Cosmetology 8: 257-266
  27. Lee GB, Yeom AR, Kim DW, Park CM, Joung MS, Lee GT, Jeong CS (2018) Evaluation of Alcea rosea L. callus extract as a natural cosmetic ingredient. J Soc Cosmet Scientists Korea 44: 295-302. doi: 10.15230/SCSK.2018.44.3.295
  28. Cho YH, Cho JS, Lee GW (2011) Antioxidant activity of wood vinegar by bioconversion. Korea Academia-Industrial cooperation Society 12: 4434-4442. doi: 10.5762/KAIS.2011.12.10.4434
  29. Kim KH, Ko KI, Kang EJ, Yang EK, Park SN (2004) A research trend of natural product on well-being industry. J Soc Cosmet Scientists Korea 30: 329-343
  30. Yuan HD, Kim JT, Chung SH (2012) Pectinase-processed Ginseng radix (GINST) ameliorates hyperglycemia and hyperlipidemia in high fat diet-fed ICR mice. Biomol Ther 20: 220-225. doi: 10.4062/biomolther.2012.20.2.220
  31. Kim MS, Park TJ, Lim JS, Kim SY (2019) Effect of Agaricus biorenovate extract on collagen synthesis and matrix metalloproteinase-1 production in human dermal fibroblast. KSBB journal 34: 49-53. doi:10.7841/ksbbj.2019.34.1.49
  32. Lee KM, Park TJ, Lee EY, Kim SW, Han DH, Kim SY (2021) Melanogenesis inhibitory effects of Phryma leptostachya callus using biorenovation in B16F10 melanoma cells. KSBB journal 36: 42-48 https://doi.org/10.7841/ksbbj.2021.36.1.42
  33. Choi HR, Park JS, Kim KM, Kim MS, Ko KW, Hyun CG, Ahn JW, Seo JH, Kim SY (2018) Enhancing the antimicrobial effect of genistein by biotransformation in microbial system. J Ind Eng Chem 63: 255-261. doi: /10.1016/j.jiec.2018.02.023
  34. Schulz K, Kerber S, Kelm M (1999) Reevaluation of the Griess method for determining NO/NO2- in aqueous and protein-containing samples. Nitric Oxide 3: 225-234. doi: 10.1006/niox.1999.0226
  35. Sim JH, Lee KM, Park TJ, Kang MS, Hong HH, Kim SY (2021) Biorenovation-Assisted Modifiction of Ligustrum japonicum Extract for Skin-Whitening Effect. KSBB Journal 36(1): 30-35 https://doi.org/10.7841/ksbbj.2021.36.1.30
  36. Meerloo JV, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Cancer Cell Culture 731: 237-245. doi: 10.1007/978-1-61779-080-5_20
  37. Kang JK, Hyun CG (2020) 4-Hydroxy-7-Methoxycoumarin Inhibits Inflammation in LPS-activated RAW264.7 Macrophages by Suppressing NF-κB and MAPK Activation. Molecules 25(19): 4424. doi: 10.3390/molecules25194424
  38. Korhonen R, Lahti A, Kankaanranta H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Current Drug Targets -Inflammation and Allergy 4: 471-479 https://doi.org/10.2174/1568010054526359
  39. Martel-Pelletier J, Pelletier JP, Fahmi H (2003) Cyclooxygenase-2 and prostaglandins in particular tissues. Semin Arthritis Rheum 33: 157-167. doi: 10.1016/S0049-0172(03)00134-3
  40. Watanabe K, Kawamori T, Nakatsugi S, Wakabayashi K (2000) COX-2 and iNOS, good targets for chemoprevention of colon cancer. Biofactors 12: 129-133. doi: 10.1002/biof.5520120120
  41. Wu KK (2003) Control of COX-2 and iNOS gene expressions by aspirin and salicylate. Thromb Res 110: 273-276. doi: 10.1016/S0049-3848(03)00412-2
  42. Kiemer AK, Hartung T, Huber C, Vollmar AM (2003) Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-κB pathway. Hepatology 38: 289-297. doi:10.1016/S0168-8278(02)00417-8
  43. Xie QW, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Bio Chem 269:4705-4708. doi: 10.1016/S0021-9258(17)37600-7
  44. Kim TY, Leem KH (2019) Effect of cheongpyesagan-tang on LPS induced inflammation in RAW 264.7 cells. Physiology and Pathology In Korean Medicine 33: 31-38. doi: 10.15188/kjopp.2019.02.33.1.31