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Introduction 

Zooplankton is a crucial component of marine ecosystems as they 
transfer materials and energy from lower to higher trophic levels. 
They consume phytoplankton, thereby reducing their population, 
and also influence the growth and survival of fish larvae. The 
zooplanktons found within South Korean coastal waters consist 
of euphausiids, copepods, amphipods, decapods, and isopods the 
dominant species being euphausiids and copepods. Euphausiids 
(Euphausia pacifica) inhabit the seas around South Korea and 
are distributed widely around the northern Pacific Ocean. They 

play a significant role in marine ecosystems where they connect 
the primary producers (phytoplankton) and the top predators. 
Copepods constitute approximately 70% of zooplankton; they 
consume primary producers, transferring the energy to the next 
trophic level. Since their mobility is limited, their community 
structure and distribution patterns depend on the physical and 
chemical conditions of their surrounding environment (Gómez-
Gutiérrez et al., 2005; Lee et al., 1999, 2021; Yoon et al., 2015).

Measuring the density and biomass of euphausiids and 
copepods is crucial, and both plankton nets and acoustic 
investigation methods are used to identify the density and 
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Abstract
This study used a multi-frequency acoustic method to assess the density and spatial distribution of dominant zooplankton, eu-
phausiids and copepods, which are representative species of the zooplankton immigrating the sea around Republic of Korea. 
Acoustic surveys were carried out in the East Sea and South Sea from June 16 to 29, 2017, using the research vessel Tamgu 20th 
from the National Institute of Fisheries Science. From the results of the acoustic survey, the distribution of euphausiids was rela-
tively higher in the East Sea than in the South Sea. Additionally, although the distribution of copepods was low in all areas, they 
were abundant in certain areas in the East Sea and the southern area of the Jeju Sea. Euphausiid and copepod density was esti-
mated to be 1.2 g/m2 (CV = 19.1%) and 2.8 g/m2 (CV = 23.5%), respectively.
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biomass of zooplanktons. Plankton nets can assist in species-type 
differentiation and qualitative analysis. However, they may display 
flight responses to the nets during collection, and, depending on 
the survey area, the surveys can take a considerable amount of 
time and effort. 

An acoustic survey can provide data on the take-all stratum 
of wide areas of sea relatively rapidly, so it is ideal for identifying 
the temporal and distribution and biomass of marine organisms 
(Cox et al., 2011; Fielding et al., 2014; Han et al., 2017; La et al., 
2016; Lawson et al., 2008; Seo et al., 2016). Hydro-acoustics apply 
the dB difference method, which uses multi-frequency to identify 
fish and zooplankton species (Kang, 2012; Kang et al., 2002; 
McKelvey & Wilson, 2006; Miyashita et al., 1998).

This study aims to identify species and estimate densities of 
copepods and copepods using multiple frequencies (38, 70, 120, 
200 kHz).

Materials and Methods

Survey area
An acoustic survey, ranging from the East Sea to the southern 
seas surrounding Jeju Island, was conducted from the research 
vessel Tamgu 20th of the National Institute of Fisheries Science 
between June 16 and June 29, 2017 (Fig. 1). A total of 17 transects 
were selected in the survey area, which encompassed an area of 

65,000 km2. The research vessel’s speed was maintained at 7–8 
knots while collecting the acoustic data.

Data acquisitions and analysis of acoustic system
The acoustic system used for the survey was a split-beam 
type scientific echo sounder (EK60, Simrad, Norway), and 
acoustic data were collected at 18, 38, 70, 120, and 200 kHz. The 
continuous location data was obtained from the receiver and 
entered into the scientific echo sounder. The acoustic data saved 
in the computer included Differential Global Positioning System 
(DGPS) location data.

Acoustic data analysis
Later, in the laboratory, hydro-acoustic data processing software 
(Echoview V 8.0, Echoview Software Pty, Tasmania, Australia) 
was used to analyze and process the acoustic data collected 
during the survey. Acoustic data at 18, 38, 70, 120, and 200 kHz 
were collected for distinguishing the zooplankton. However, 
low frequencies were excluded because small organisms such as 
zooplankton can be detected at low frequencies, such as 18 kHz 
(Fig. 2).

Background noise is generated when the depth of the survey 
area is outside the detection range of the studied frequency and 
when the acoustic intensity is relatively high. Noise was eliminated 
in consideration of the data sample values included in the vertical 
and horizontal areas. When the signal-to-noise ratio (SNR) value 
is greater than the threshold value δ, the data sample value is 
eliminated after being converted to -999 dB a method known as 
the time-varied threshold (De Robertis & Higginbottom, 2007; 

Fig. 1. Acoustic survey transects in the East Sea and southern 
seas of Jeju island, taken between June 16 and June 29, 
2017.

Fig. 2. Acoustic data noise processing flow chart and echogram 
example.
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Echoview, 2018). (Table 1).

(1)

Impulse noise is generated from the interference of the 
acoustic equipment loaded on another vessel. Its irregular 
and vertical shape resembles thick raindrops. Impulse noise is 
eliminated when the subtracted sample value of the change in the 
horizontal range of the selected site’s central data sample is greater 
than the threshold value a method known as the two-sided 
comparison (Kang et al., 2019) (Table 2).

(2)

Differentiating euphausiids from copepods using multi-fre-
quency
To differentiate the euphausiid and copepod echoes, the 
properties and differences between the euphausiid and copepod 
frequencies at 38, 70, 120, and 200 kHz must be identified. Here, 
the frequency difference refers to the difference in the average 
mean volume backscattering strength (MVBS) of the multi-
frequency. For the ∆MVBS value to be positive, the acoustic target 
strength (TS) of the frequency of each target species must be 
compared for classification, with the frequency with the smallest 
TS value subtracted from the frequency with the largest TS value. 
The ∆MVBS from the new echogram of 38, 70, 120, and 200 kHz 
organized into a matrix can be expressed as equation (3).

(3)

The data processing flow of differentiating euphausiid 
from copepod frequencies is shown in Fig. 3. When the noise 
(sea surface, sea bottom, etc.) is filtered before establishing the 
integration section, a matrix for each frequency is formed to 

generate a new echogram. This study applied the cell size 10 ping 
× 1 m (width × height) to examine the differences in frequencies.
When the dB difference between each euphausiid and copepod 
becomes definite, the value range is established to create a data 
range bitmap. For each echo and frequency established within 
this range, a mask with an echo that matches the cell size is 
made, which is further divided into the ping intervals where the 
echoes matching with the noise-eliminated echoes are considered 
euphausiid and copepod echoes. These echoes can then be 
distinguished using the above method.

Density assessment using acoustics methodology
We used the nautical area scattering coefficient (NASC) values 
converted from volume backscattering strength (SV) data drawn 
at one nautical mile from the fish finder in order to estimate the 
density of euphausiids and copepods using acoustics. Equation 
(4) shows the conversion relationship from SV to NASC.

(4)

The NASC value is the linear combination of the signals 
received from the aquatic organisms within a volume, so the 

Table 1. Parameters used to remove background noise
Frequency 38 kHz 70 kHz 120 kHz 200 kHz

Horizontal extent (ping) 20 20 20 20

Vertical units Samples Samples Samples Samples

Vertical extent (samples) 5 5 5 5

Vertical overlap (%) 0 0 0 0

Maximum noise (dB) –125 –130 –120 –135

Minimum SNR 10 10 10 12

SNR, signal-to-noise ratio.

Table 2. Parameters used to remove impulse noise
Parameters Values

Exclude above Surface

Exclude below Bottom

Exclude below threshold (dB at 1 m) –170

Vertical window units Samples

Vertical window size (samples) 5

Horizontal size (pings) 5

Threshold (dB) 10

Noise sample replacement value Mean

, ,SNR( , ) ( , ) ( , ) SNR( , ) corr  noise   v v SNRi j S i j S i j if i j threshold= − ≤

,, ( ), ( ),. and >  >  
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density (ρ, g m2) of the target organism can be obtained by 
dividing the average NASC value by the TS of the target fish 
(Equation (9)). The TS and backscattering cross-section (σ) 
depending on the target organism’s body length (L, mm) can be 
expressed in equations (5), (6) and (7), respectively.

(5)
(6)

(7)

The target organism’s body length (L, mm)-weight (w, mg) 
relationship is shown in equation (8).

(8)

Here, the catch data that were fished with fishing gear at the 
same time as the acoustic survey were used for backscattering 
cross-section and body length-weight function equations of the 
target organism. Zooplankton were collected using Bongo net, 
which showed that euphausiids and copepods were dominant 
among the collection data. The minimum and maximum lengths 
of the euphausiids were 12 mm and 17 mm, while the minimum 
and maximum lengths of copepods were 1 mm and 5 mm, 
respectively (Table 3).

The target organism’s density (ρ) can be obtained by dividing 
the average NASC within the volume at one nautical mile distance 
by the backscattering cross-section (σ) and multiplying the weight 

(equation (9)). All except NASC on the right side of equation (8) 
are conversion factors that calculate the density from the acoustic 
data, which considers the backscattering cross-section and body 
length-weight of the target organism. Average values were used 
for the backscattering cross-section and for the weight of the 
target organism.

(9)

For equation (10) (krill body length-weight relationship) 
and equation (11) (copepod body length-weight relationship), we 
used the study results of Tojo et al. (2011) and Kobari et al. (2003), 
respectively.

(10)

where the weight is W (mg), and the body length is TL (mm).

(11)

where the weight is W (mg), and the body length is PL (mm).
Equation (12) and equation (13) were used for the TS-body 
length relationship equation for krill Matsukura et al. (2009b) and 
copepods Stanton & Chu (2000), respectively.

(12)
(13)

The average target organism density ( 1

1
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=

⋅
=
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∑
) of the entire 

investigated sea area was the weighted mean of each transect’s 
average density data, as shown in equation (14).

(14)

where, 
1

1

N

i i
i

N

i
i

n

n

ρ
ρ =

=

⋅
=
∑

∑

: average density of the ith transect; ni EDSU of the ith 

transect; N: number of transects.

Fig. 3. Flow chart of acoustic data processing using the dB 
difference method at 38, 70, 120, and 200 kHz.

Table 3. Euphausiids and copepods with sampling data
Group Min (mm) Max (mm) Avg. (mm)

Euphausiids 12.0 17.0 14.0 

Copepods 1.02 5.10 2.61
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Results and Discussion

Characterization of the acoustic scattering of euphausiids 
and copepods using theoretical models
The body length-TS relationship of each euphausiid and copepod 
depending on their frequencies using the DWBA model (Kobari 
et al., 2003) are shown in Figs. 4 and 5. The TS of euphausiids 
increases with the body length and frequency, while the TS of 
copepods increases with body length.

The dB differences of euphausiids and copepods, according 
to changes in body length, are shown in Figs. 6 and 7. For 
euphausiids, the dB difference, according to the change in body 
length, was highest at approximately 30 dB at 38–200 kHz and 

lowest at 5 dB at 38–70 kHz. In the frequency ranges 38–200, 
70–200, and 120–200 kHz, the dB difference decreased at the 20 
mm section and increased again (Fig. 6). 

The copepod dB difference, according to changes in body 
length, was highest at 25 dB at 200–38 kHz and lowest at 2 dB at 
70–38 kHz. In the frequency ranges 200–38, 200–70, and 200–120 
kHz, they decreased at the 17 mm section before increasing again 
(Fig. 7). The body length range of the euphausiids collected from 
the investigation area was 12–17 mm and their average value was 
14 mm. The copepod body length range was 1–5 mm and their 
average value was 3 mm. The dB differences within these size 
ranges are shown in Table 4. The euphausiid dB differences were 
11.0–17.8, 3.3–8.8, –0.9 to 2.9, 11.9–14.9, 4.2–5.9, and 7.8–9.0 dB 
at 200–38, 200–70, 200–120, 120–38, 120–70, and 70–38 kHz, 
respectively. For copepods, they were 25.3–28.7, 15.1–18.1, 6.7–

Fig. 5. Relationship between TS and body length of 
copepods at 38, 70, 120, and 200 kHz. TS, target strength. PL, 
prosome length.

Fig. 4. The average target strength of the euphausiid 
Euphausia pacifica versus its body length using the DWBA 
model. TL, total length.

Fig. 7. Differences in copepod frequency. PL, prosome length.

Fig. 6. Differences in euphausiid frequency. TL, total length.
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8.8, 18.7–19.9, 8.4–9.3, and 10.2–10.6 dB at 200–38, 200–70, 200–
120, 120–38, 120–70, and 70–38 kHz, respectively (Table 4). The 
above values were applied to distinguish between euphausiids and 
copepods in the survey area. The previously studied dB difference 
of euphausiids at 120–38 kHz was greater than 10 dB (Kang et al., 
2002), while the dB difference range was similar for euphausiids 
(11.6–15.3 dB) and copepods (13.7–17.3 dB) at 120–38 kHz 
(Matsukura et al., 2009b). In this frequency range, it would be 
difficult to distinguish between euphausiids and copepods. Kim 
et al. (2018) and Tojo et al. (2011) identified the dB difference 
between euphausiids using the 38 and 120 kHz frequencies. The 
euphausiid dB differences were 13.9–17.6 dB at 120–38 kHz. 
Kim et al. (2018) and Stanton & Chu (2000) also identified the 
dB difference between euphausiids and copepods using 38, 120, 
and 200 kHz frequencies. The euphausiid dB differences were 
6–20, 6–29, and –4 to 9 dB at 120–38, 200–38, and 200–120 kHz, 
respectively. The copepod dB differences were 17–20, 22–29, and 
5–9 dB at 120–38, 200–38, and 200–120 kHz, respectively. The 
dB difference values were higher in euphausiids than in copepods 
(Table 5).

Temporal and spatial distributions of euphausiids and copepods
The temporal and spatial distributions of the euphausiids and 
copepods distinguished using dB differences are shown in (Figs. 
8 and 9). The larger the NASC of euphausiids and copepods, the 
larger the circle size, and the closer it is to the color red.

Euphausiids in the East Sea had a larger NASC than those in 
the South Sea or Jeju Sea areas. NASCs were higher around the 
coast than in the open seas in transect 1, while the NASCs were 
higher in all sea areas in transect 3. NASC was nearly nonexistent 
in transects 5–8 in the South Sea area, while it was relatively 
high in transects 9, 13, and 14 in the northern and southern seas 
surrounding Jeju Island. The western area of transect 9 had a 
larger NASC than the eastern area. NASC was high in the center 
of transects 13 and 14. The NASC for copepods was low in all sea 
areas; however, it was relatively high in the East Sea compared 
with the other sea areas.

We compared and analyzed previous studies conducted in 
the southern East Sea area, where zooplankton distribution was 

highest. Kim et al. (2018) studied zooplankton distribution near 
Yeongil Bay (southern East Sea area) using a zooplankton net and 
acoustics from March to July, which showed that the dominant 
species were euphausiids. Our results also showed euphausiid 
distribution to be the highest in June in the same sea area.

Average density of euphausiids and copepods
The average densities of euphausiids and copepods in the 
investigated transects are shown in Figs. 10 and 11. Euphausiid 
density was highest at 4.4 g/m2 in transect 3 and lowest at 0.4 g/
m2 in transect 13. Copepod density was also highest at 8.3 g/m2 
in transect 3 and smallest at 0.8 g/m2 in transect 11. The weighted 
average densities and biomass of euphausiids and copepods were 

Table 4. dB differences for euphausiids and copepods with sampling
Species 200–38 kHz 200–70 kHz 200–120 kHz 120–38 kHz 120–70 kHz 70–38 kHz

Euphausia pacifica 11.0–17.8 3.3–8.8 –0.9–2.9 11.9–14.9 4.2–5.9 7.8–9.0 

Copepods 25.3–28.7 15.1–18.1 6.7–8.8 18.7–19.9 8.4–9.3 10.2–10.6 

Table 5. Summary of dB differences estimates by this study 
and previous studies for euphausiids and copepods
Species dB differences

(kHz)
Range of differences 
(dB)

Reference

Euphausia 
pacifica

200–38 11.0–17.8 This study

200–70 3.3–8.8

200–120 –0.9–2.9

120–38 11.9–14.9

120–70 4.2–5.9

70–38 7.8–9.0

Euphausia 
pacifica

120–38 13.9–17.6 Kim et al. (2018)

120–38 11.6–15.3 Kang et al. (2002)

120–38 11.9–19.7 Kang et al. (2002)

120–38 6.0–20.0 Kim et al. (2018)

200–38 6.0–29.0

200–120 –4.0–9.0

Copepods 200–38 11.0–17.8 This study

200–70 3.3–8.8

200–120 –0.9–2.9

120–38 11.9–14.9

120–70 4.2–5.9

120–38 13.7–17.3 Murase et al. (2009)

120–38 17.0–20.0 Kim et al. (2018)

200–38 22.0–29.0

200–120 5.0–9.0
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estimated to be 1.2 g/m2 (CV, Coefficient of Variation = 19.1%) 
and 2.8 g/m2 (CV = 23.5%), respectively.

Conclusions

After identifying the acoustic backscattering strength on the 
euphausiid and copepod analysis frequencies, the frequency 
difference, as ∆MVBS, from multi-frequencies can be obtained as 

a positive value by subtracting the frequency with the largest and 
smallest TS of the target species. The results of the euphausiid dB 
differences were 11.0–17.8, 3.3–8.8, –0.9 to 2.9, 11.9–14.9, 4.2–5.9, 
and 7.8–9.0 dB at 200–38, 200–70, 200–120, 120–38, 120–70 and 
70–38 kHz, respectively. For copepods, they were 25.3–28.7, 15.1–
18.1, 6.7–8.8, 18.7–19.9, 8.4–9.3, and 10.2–10.6 dB at 200–38, 
200–70, 200–120, 120–38, 120–70 and 70–38 kHz, respectively. 
The acoustic scattering character of euphausiids and copepods 
using the DWBA model showed that the TS of euphausiids 
increased as body length and frequency increased. At 200 kHz, 
the TS decreased in correspondence of approximately a body 
length of 20 mm before increasing again. This was similar to 70 
kHz but lower than 120 kHz. Moreover, the difference in the TS 
values for each frequency decreased as body length increased. The 
TS of copepods also increased as body length and frequency in-
creased. At 200 kHz their body length decreased at approximately 

Fig. 9. Spatial distribution of copepods.

Fig. 8. Spatial distribution of euphausiids.

Fig. 11. Density by survey line of copepods.

Fig. 10. Density by survey line of euphausiids.
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15 mm before increasing again, so the TS value was lower than 
that at 70 or 120 kHz. Currently, South Korea is implementing a 
fishing quota system centering on TAC fish species. Therefore, as 
in this study, a distribution survey of food organisms can form 
the basis for fishery resource management. In addition, there is a 
lack of research on species identification using more than three 
frequencies, so this paper can be used as a basis for research on 
species identification using more than three frequencies.
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