DOI QR코드

DOI QR Code

A review of the latest research on Ganoderma boninense

  • Su-Han LEE (Dept. of Food Science & Service, College of Bio-Convergence, Eulji University) ;
  • Su-Han LEE (Dept. of Food Science & Service, College of Bio-Convergence, Eulji University)
  • Received : 2023.02.13
  • Accepted : 2023.03.18
  • Published : 2023.03.30

Abstract

As oil palm trees are an important economic source in many countries, particularly in Southeast Asia and Africa, the study of Ganoderma boninense is crucial for the sustainability of the oil palm industry. This study aims to understand the biology and ecology of the fungus, its pathogenesis, and the impact it has on oil palm trees. This knowledge can be used to develop management strategies to mitigate the damage caused by the fungus, such as the use of resistant varieties, chemical and biological control methods, and cultural practices. This study is to ensure the long-term productivity and sustainability of the oil palm industry. The main method of recent academic studies on this pathogen is molecular biology, with a focus on genetic analysis and functional genomics. Researchers have used techniques such as PCR, DNA sequencing, and transcriptomics to identify genes and pathways involved in pathogenesis and better understand the fungus's interactions with its host plant. Other methods used in recent studies include biochemical analysis, microscopy, and phytohormonal assays to investigate the biochemistry and physiology of the interaction between G. boninense and oil palm. This study is intended to provide implications from a new perspective by organizing and integrating studies on Ganoderma boninense.

Keywords

References

  1. Abdullah, A. H., Shakaff, A. M., Adom, A. H., Ahmad, M. N., Zakaria, A., Ghani, S. A., ... & Seman, I. A. (2012). P2. 1.7 Exploring MIP sensor of Basal Stem Rot (BSR) disease in palm oil plantation. Tagungsband, 1348-1351.
  2. Abubakar, A., Ishak, M. Y., Bakar, A. A., & Uddin, M. K. (2022). Ganoderma boninense basal stem rot induced by climate change and its effect on oil palm. Environmental Sustainability, 5(3), 289-303. https://doi.org/10.1007/s42398-022-00244-7
  3. Ahmadi, P., Muharam, F. M., Ahmad, K., Mansor, S., & Abu Seman, I. (2017). Early detection of Ganoderma basal stem rot of oil palms using artificial neural network spectral analysis. Plant disease, 101(6), 1009-1016. https://doi.org/10.1094/pdis-12-16-1699-re
  4. Alexander, A., & Phin, C. K. (2014). Combination of biological agents in suppressing colonization of Ganoderma boninense of basal stem rot. American-Eurasian Journal of Sustainable Agriculture, 8(7), 1-7.
  5. Alexander, A., Sipaut, C. S., Chong, K. P., Lee, P. C., & Dayou, J. (2014). Sensitivity analysis of the detection of Ganoderma boninense infection in oil palm using FTIR. Transactions on Science and Technology, 1(1), 1-5.
  6. Arnnyitte, A., Jedol, D., Coswald, S. S., Phin, C., & Chin, L. (2014). Some interpretations on FTIR results for the detection of Ganoderma boninense in oil palm tissue. Advances in Environmental Biology, 8(14), 30-32.
  7. Bharudin, I., Ab Wahab, A. F. F., Abd Samad, M. A., Xin Yie, N., Zairun, M. A., Abu Bakar, F. D., & Abdul Murad, A. M. (2022). Review update on the life cycle, plant-microbe interaction, genomics, detection and control strategies of the oil palm pathogen Ganoderma boninense. Biology, 11(2), 251.
  8. Chung, G. F. (2012). Effect of pests and diseases on oil palm yield. In Palm Oil (pp. 163-210). AOCS Press.
  9. Daval, A., Pomies, V., Le Squin, S., Denis, M., Riou, V., Breton, F., ... & Tisne, S. (2021). In silico QTL mapping in an oil palm breeding program reveals a quantitative and complex genetic resistance to Ganoderma boninense. Molecular Breeding, 41(9), 53.
  10. Dayou, J., Alexander, A., Sipaut, C. S., Phin, C. K., & Chin, L. P. (2014). On the possibility of using FTIR for detection of Ganoderma boninense in infected oil palm tree. International Journal of Advances in Agricultural and Environmental Engineering, 1(1), 161-163.
  11. Hanin, A. N., Parveez, G. K. A., Rasid, O. A., & Masani, M. Y. A. (2020). Biolistic-mediated oil palm transformation with alfalfa glucanase (AGLU1) and rice chitinase (RCH10) genes for increasing oil palm resistance towards Ganoderma boninense. Industrial crops and products, 144, 112008.
  12. Isha, A., Akanbi, F. S., Yusof, N. A., Osman, R., Mui-Yun, W., & Abdullah, S. N. A. (2019). An NMR metabolomics approach and detection of Ganoderma boninense-infected oil palm leaves using MWCNT-based electrochemical sensor. Journal of Nanomaterials, 2019, 1-12. https://doi.org/10.1155/2019/4729706
  13. Isha, A., Yusof, N. A., Shaari, K., Osman, R., Abdullah, S. N. A., & Wong, M. Y. (2020). Metabolites identification of oil palm roots infected with Ganoderma boninense using GC-MS-based metabolomics. Arabian Journal of Chemistry, 13(7), 6191-6200. https://doi.org/10.1016/j.arabjc.2020.05.026
  14. Isha, A., Yusof, N. A., Shaari, K., Osman, R., Abdullah, S. N. A., & Wong, M. Y. (2020). Metabolites identification of oil palm roots infected with Ganoderma boninense using GC-MS-based metabolomics. Arabian Journal of Chemistry, 13(7), 6191-6200. https://doi.org/10.1016/j.arabjc.2020.05.026
  15. Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., & Seman, I. A. (2018). Spectral features selection and classification of oil palm leaves infected by Basal stem rot (BSR) disease using dielectric spectroscopy. Computers and Electronics in Agriculture, 144, 297-309. https://doi.org/10.1016/j.compag.2017.11.012
  16. Lelong, C. C., Roger, J. M., Bregand, S., Dubertret, F., Lanore, M., Sitorus, N. A., ... & Caliman, J. P. (2010). Evaluation of oil-palm fungal disease infestation with canopy hyperspectral reflectance data. Sensors, 10(1), 734-747. https://doi.org/10.3390/s100100734
  17. Liaghat, S., Ehsani, R., Mansor, S., Shafri, H. Z., Meon, S., Sankaran, S., & Azam, S. H. (2014). Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. International Journal of Remote Sensing, 35(10), 3427-3439. https://doi.org/10.1080/01431161.2014.903353
  18. Liaghat, S., Mansor, S., Ehsani, R., Shafri, H. Z. M., Meon, S., & Sankaran, S. (2014). Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm. Computers and electronics in agriculture, 101, 48-54. https://doi.org/10.1016/j.compag.2013.12.012
  19. Mohd Hilmi Tan, M. I. S., Jamlos, M. F., Omar, A. F., Dzaharudin, F., Chalermwisutkul, S., & Akkaraekthalin, P. (2021). Ganoderma boninense disease detection by near-infrared spectroscopy classification: A review. Sensors, 21(9), 3052.
  20. Muniroh, M. S., Nusaibah, S. A., Vadamalai, G., & Siddique, Y. (2019). Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings. Current Plant Biology, 20, 100116.
  21. Noor Azmi, A. N., Bejo, S. K., Jahari, M., Muharam, F. M., Yule, I., & Husin, N. A. (2020). Early detection of Ganoderma boninense in oil palm seedlings using support vector machines. Remote Sensing, 12(23), 3920.
  22. Pane, R. D. P., Farrasati, R., Darlan, N. H., Rahutomo, S., Santoso, H., Ginting, E. N., ... & Hidayat, F. (2022). Study of soil bacteria and fungi population in oil palm with big hole planting system. Berkala Penelitian Hayati, 27(2), 91-97. https://doi.org/10.23869/bphjbr.27.2.20226
  23. Parvin, W., Govender, N., Othman, R., Jaafar, H., Rahman, M., & Wong, M. Y. (2020). Phenazine from Pseudomonas aeruginosa UPMP3 induced the host resistance in oil palm (Elaeis guineensis Jacq.)-Ganoderma boninense pathosystem. Scientific reports, 10(1), 1-12. https://doi.org/10.1038/s41598-019-56847-4
  24. Paterson, R. R. M. (2019). Ganoderma boninense disease of oil palm to significantly reduce production after 2050 in Sumatra if projected climate change occurs. Microorganisms, 7(1), 24.
  25. Paterson, R. R. M. (2020). Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environmental Science, 7(5), 366-379
  26. Shafri, H. Z., Anuar, M. I., Seman, I. A., & Noor, N. M. (2011). Spectral discrimination of healthy and Ganoderma-infected oil palms from hyperspectral data. International journal of remote sensing, 32(22), 7111-7129. https://doi.org/10.1080/01431161.2010.519003
  27. Shokrollahi, N., Ho, C. L., Zainudin, N. A. I. M., Wahab, M. A. W. B. A., & Wong, M. Y. (2021). Identification of non-ribosomal peptide synthetase in Ganoderma boninense Pat. that was expressed during the interaction with oil palm. Scientific reports, 11(1), 16330.
  28. Sundram, S., Meon, S., Seman, I. A., & Othman, R. (2015). Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings. Mycorrhiza, 25, 387-397. https://doi.org/10.1007/s00572-014-0620-5
  29. Surendran, A., Siddiqui, Y., Ahmad, K., & Fernanda, R. (2021). Deciphering the physicochemical and microscopical changes in ganoderma boninense-infected oil palm woodblocks under the influence of phenolic compounds. Plants, 10(9), 1797.
  30. Zainol Hilmi, N. H., Idris, A. S., & Mohd Azmil, M. N. (2019). Headspace solid- phase microextraction gas chromatography-mass spectrometry for the detection of volatile organic compounds released from Ganoderma boninense and oil palm wood. Forest Pathology, 49(4), e12531.