DOI QR코드

DOI QR Code

Simplified analytical solution of tunnel cross section under oblique incident SH wave in layered ground

  • Huifang, Li (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture) ;
  • Mi, Zhao (Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology) ;
  • Jingqi, Huang (Beijing Key Laboratory of Urban Underground Space Engineering, School of Civil and Resource Engineering, University of Science and Technology Beijing) ;
  • Weizhang, Liao (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture) ;
  • Chao, Ma (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture)
  • 투고 : 2022.10.17
  • 심사 : 2023.01.12
  • 발행 : 2023.01.25

초록

A simplified analytical solution for seismic response of tunnel cross section in horizontally layered ground subjected to oblique incidence of SH wave is deduced in this paper. The proposed analytical solution consists of two main steps: free-field response in layered field and tunnel response. The free field responses of the layered ground are obtained by one-dimensional finite element method in time domain. The tunnel lining is treated as a thick-wall cylinder to calculate the tunnel response, which subject to free field stress. The analytical solutions are verified by comparing with the dynamic numerical results of two-dimensional ground-lining interaction analysis under earthquake in some common situations, which have a good agreement. Then, the appropriate range of the proposed analytical solution is analyzed, considering the height of the layered ground, the wavelength and incident angle of SH wave. Finally, by using the analytical solutions, the effects of the ground material, burial depth of the tunnel, and lining thickness and the slippage effect at the ground-lining interface on the seismic response of tunnels are investigated. The proposed solution could serve as a useful tool for seismic analysis and design of tunnels in layered ground.

키워드

과제정보

This research was supported by National key research and development program (2022YFC3003603, 2022YFC3004304), National Natural Science Foundation of China (52278476, 51878028), Natural Science Foundation of Beijing Municipality (8222015, 8212007) and Young Teachers' Research Ability Improvement Plan of Beijing University of Civil Engineering and Architecture (X22007). The support is gratefully acknowledged.

참고문헌

  1. Bobet, A. (2003), "Effect of pore water pressure on tunnel support during static and seismic loading", Tunnel. Undergr. Space Technol., 18(4), 377-393. https://doi.org/10.1016/S0886-7798(03)00008-7.
  2. Bobet, A. (2010), "Drained and undrained response of deep tunnels subjected to far-field shear loading", Tunnel. Undergr. Space Technol., 25(1), 21-31. https://doi.org/10.1016/j.tust.2009.08.001.
  3. Chen, J., Yu, H., Bobet, A. and Yuan, Y. (2020), "Shaking table tests of transition tunnel connecting TBM and drill-and-blast tunnels", Tunnel. Undergr. Space Technol., 96, 103197. https://doi.org/10.1016/j.tust.2019.103197.
  4. Chen, X., Zhang, N., Gao, Y. and Dai, D. (2019), "Effects of a V-shaped canyon with a circular underground structure on surface ground motions under SH wave propagation", Soil Dyn. Earthq. Eng., 127, 105830. https://doi.org/10.1016/j.soildyn.2019.105830.
  5. Chen, Z., Shi, C., Li, T. and Yuan, Y. (2012), "Damage characteristics and influence factors of mountain tunnels under strong earthquakes", Nat. Hazard., 61(2), 387-401. https://doi.org/10.1007/s11069-011-9924-3.
  6. Datta, T.K. (1999), "Seismic response of buried pipelines: A state-of-the-art review", Nucl. Eng. Des., 192(2), 271-284. https://doi.org/10.1016/S0029-5493(99)00113-2.
  7. Du, X.L., Zhao, M. and Wang, J.T. (2006), "A stress artificial boundary in FEA for near-field wave problem", Chin. Theor. Appl. Mech., 38(1), 49-56.
  8. El Naggar, H., Hinchberger, S.D. and El Naggar, M.H. (2008), "Simplified analysis of seismic in-plane stresses in composite and jointed tunnel linings", Soil Dyn. Earthq. Eng., 28(12), 1063-1077. https://doi.org/10.1016/j.soildyn.2007.12.001.
  9. Gao, Y., Chen, X., Zhang, N., Dai, D. and Yu, X. (2018), "Scattering of plane SH waves induced by a semicylindrical canyon with a subsurface circular lined tunnel", Int. J. Geomech., 18(6), 06018012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001137.
  10. Gao, Y., Dai, D., Zhang, N., Wu, Y. and Mahfouz, A.H. (2017), "Scattering of plane and cylindrical SH waves by a horseshoe shaped cavity", J. Earthq. Tsunami, 11(2), 1650011. https://doi.org/10.1142/S1793431116500111.
  11. Hashash, Y.M.A., Park, D. and Yao, J.I.C. (2005), "Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures", Tunnel. Undergr. Space Technol., 20(5), 435-441. https://doi.org/10.1016/j.tust.2005.02.004.
  12. Hassan, M.T. and Nassar, M. (2015), "Analysis of stressed Timoshenko beams on two parameter foundations", KSCE J. Civil Eng., 19(1), 173-179. https://doi.org/10.1007/s12205-014-0278-8.
  13. Hatzigeorgiou, G.D. and Beskos, D.E. (2010), "Soil-structure interaction effects on seismic inelastic analysis of 3-D tunnels", Soil Dyn. Earthq. Eng., 30(9), 851-861. https://doi.org/10.1016/j.soildyn.2010.03.010.
  14. Hoeg, K. (1968), "Stresses against underground structural cylinders", J. Soil Mech. Found. Div., 94(4), 833-858. https://doi.org/10.1061/JSFEAQ.0001175
  15. Huang, J.Q., Du, X., Jin, L. and Zhao, M. (2016), "Impact of incident angles of P waves on the dynamic responses of long lined tunnels", Earthq. Eng. Struct. Dyn., 45(15), 2435-2454. https://doi.org/10.1002/eqe.2772.
  16. Huang, J.Q., Du, X., Zhao, M. and Zhao, X. (2017), "Impact of incident angles of earthquake shear (S) waves on 3-D non-linear seismic responses of long lined tunnels", Eng. Geol., 222, 168-185. https://doi.org/10.1016/j.enggeo.2017.03.017.
  17. Huang, J.Q., Shao, W., Zhao, M., Han, J., Zhao, X., Du, X. and Lv, X. (2021), "Simplified analytical solution for circular tunnel under obliquely incident SV wave", Soil Dyn. Earthq. Eng., 140, 106429. https://doi.org/10.1016/j.soildyn.2020.106429.
  18. Jiang, X. and Song, L. (1999), "Seismic response analysis of underground tunnel in soft soil", Earthq. Eng. Eng. Dyn., 19(1), 65-69.
  19. Kouretzis, G.P., Sloan, S.W. and Carter, J.P. (2013), "Effect of interface friction on tunnel liner internal forces due to seismic S- and P-wave propagation", Soil Dyn. Earthq. Eng., 46, 41-51. https://doi.org/10.1016/j.soildyn.2012.12.010.
  20. Li, H. (2021), "Simplified analysis method for seismic response of tunnels in complex sites", Beijing University of Technology.
  21. Li, H., Zhao, M., Huang, J., Liao, W., Zhao, X. and Du, X. (2022), "Simplified analytical solutions for deep tunnels subjected to vertically incident shear wave with arbitrary vibration direction", Soil Dyn. Earthq. Eng., 156, 107245. https://doi.org/10.1016/j.soildyn.2022.107245.
  22. Liu, J. and Wang, Y. (2006), "A 1-D time-domain method for 2D wave motion in elastic layered half-space by antiplane wave oblique incidence", Chin. Theor. Appl. Mech., 38(2), 219-225.
  23. Lysmer, J. (1969), "Finite dynamic model for infinite media", J. Soil Mech. Found. Div., 95, 859-878. https://doi.org/10.1061/JMCEA3.0001144
  24. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Soil Mech. Found. Div., 85(1), 67-94. https://doi.org/10.1061/JSFEAQ.0000201
  25. Noh, G. and Bathe, K. (2013), "An explicit time integration scheme for the analysis of wave propagations", Comput. Struct., 129, 178-193. https://doi.org/10.1016/j.compstruc.2013.06.007.
  26. Panji, M. and Ansari, B. (2017), "Transient SH-wave scattering by the lined tunnels embedded in an elastic half-plane", Eng. Anal. Bound. Elem., 84, 220-230. https://doi.org/10.1016/j.enganabound.2017.09.002.
  27. Panji, M. and Mojtabazadeh-Hasanlouei, S. (2021), "Seismic ground response by twin lined tunnels with different cross sections", SN Appl. Sci., 3, 787.
  28. Panji, M. and Mojtabazadeh-Hasanlouei, S. (2021), "On subsurface box-shaped lined tunnel under incident SH-wave propagation", Front. Struct. Civil Eng., 15, 948-960. https://doi.org/10.1007/s11709-021-0740-x.
  29. Park, K., Tantayopin, K., Tontavanich, B. and Owatsiriwong, A. (2009), "Analytical solution for seismic-induced ovaling of circular tunnel lining under no-slip interface conditions: A revisit", Tunnel. Undergr. Space Technol., 24(2), 231-235. https://doi.org/10.1016/j.tust.2008.07.001.
  30. Penzien, J. (2000), "Seismically induced racking of tunnel linings", Earthq. Eng. Struct. Dyn., 29, 683-691. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<683::AID-EQE932>3.0.CO;2-1.
  31. Penzien, J. and Wu, C.L. (1998), "Stresses in linings of bored tunnels", Earthq. Eng. Struct. Dyn., 27(3), 283-300. https://doi.org/10.1002/(SICI)1096-9845(199803)27:3<283::AID-EQE732>3.0.CO;2-T
  32. Sedarat, H., Kozak, A., Hashash, Y.M.A., Shamsabadi, A. and Krimotat, A. (2009), "Contact interface in seismic analysis of circular tunnels", Tunnel. Undergr. Space Technol., 24(4), 482-490. https://doi.org/10.1016/j.tust.2008.11.002.
  33. Shen, Y.S., Gao, B., Yang, X.M. and Tao, S.J. (2014), "Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake", Eng. Geol., 180, 85-98. https://doi.org/10.1016/j.enggeo.2014.07.017.
  34. Tao, L., Hou, S., Zhao, X., Qiu, W., Li, T., Liu, C. and Wang, K. (2015), "3-D shell analysis of structure in portal section of mountain tunnel under seismic SH wave action", Tunnel. Undergr. Space Technol., 46, 116-124. https://doi.org/10.1016/j.tust.2014.11.001.
  35. Tran Manh, H., Sulem, J. and Subrin, D. (2015), "A closed-form solution for tunnels with arbitrary cross section excavated in elastic anisotropic ground", Rock Mech. Rock Eng., 48(1), 277-288. https://doi.org/10.1007/s00603-013-0542-0.
  36. Vitali, O.P.M., Celestino, T.B. and Bobet, A. (2020). "Analytical solution for a deep circular tunnel in anisotropic ground and anisotropic geostatic stresses", Rock Mech. Rock Eng., 53(9), 3859-3884. https://doi.org/10.1007/s00603-020-02157-5.
  37. Wang, J. (1993), Seismic Design of Tunnels: A State-of-the-art Approach, Parsons Brinckerhoff Quade & Douglas, Inc., New York, USA.
  38. Wang, J., Zhang, C. and Du, X. (2008), "An explicit integration scheme for solving dynamic problems of solid and porous media", J. Earthq. Eng., 12(2), 293-311. https://doi.org/10.1080/13632460701364528.
  39. Wang, L. (2017), "Oblique incidence earthquake input method and application for layered soil-structure interaction", Beijing University of Technology.
  40. Wang, W.L., Wang, T.T., Su, J.J., Lin, C.H., Seng, C.R. and Huang, T.H. (2001), "Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake", Tunnel. Undergr. Space Technol., 16(3), 133-150. https://doi.org/10.1016/S0886-7798(01)00047-5.
  41. Wang, Z.Z. and Zhang, Z. (2013), "Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake", Soil Dyn. Earthq. Eng., 45, 45-55. https://doi.org/10.1016/j.soildyn.2012.11.002.
  42. Wilson, E.L. (1968), "A computer program for the dynamic stress analysis of underground structure", Structural Engineering Lab, California University Berkeley.
  43. Yashiro, K., Kojima, Y. and Shimizu, M. (2007), "Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake", Q. Rep. RTRI (Railw. Tech. Res. Inst.) (JPN.), 48(3), 136-141. https://doi.org/10.2219/rtriqr.48.136.
  44. Yu, H., Cai, C., Bobet, A., Zhao, X. and Yuan, Y. (2019), "Analytical solution for longitudinal bending stiffness of shield tunnels", Tunnel. Undergr. Space Technol., 83, 27-34. https://doi.org/10.1016/j.tust.2018.09.011.
  45. Yu, H., Zhang, Z., Chen, J., Bobet, A., Zhao, M. and Yuan, Y. (2018), "Analytical solution for longitudinal seismic response of tunnel liners with sharp stiffness transition", Tunnel. Undergr. Space Technol., 77, 103-114. https://doi.org/10.1016/j.tust.2018.04.001.
  46. Zhang, F., Miao, Y. and Li, W. (2013), "Analysis for seismic dynamic response of subway tunnel with the consideration of layered soil", J. Civil Eng. Manage., 30(4), 40-43.
  47. Zhang, J., Yuan, Y., Bilotta, E., Zhang, B. and Yu, H. (2019), "Analytical solution for dynamic responses of the vertical shaft in a shaft-tunnel junction under transverse loads", Soil Dyn. Earthq. Eng., 126, 105779. https://doi.org/10.1016/j.soildyn.2019.105779.
  48. Zhang, N., Chen, X., Gao, Y. and Dai, D. (2020), "Analytical solution to scattering of SH waves by a circular lined tunnel embedded in a semi-circular alluvial valley in an elastic halfspace", Tunnel. Undergr. Space Technol., 106, 103615. https://doi.org/10.1016/j.tust.2020.103615.
  49. Zhang, N., Zhang, Y., Gao, Y., Dai, D. and Huang, C. (2021), "Effect of imperfect interfaces on dynamic response of a composite lining tunnel with an isolation layer under plane P and SV waves", Soil Dyn. Earthq. Eng., 142, 106586. https://doi.org/10.1016/j.soildyn.2021.106586.
  50. Zhang, Y., Zhang, N., Huang, C., Dai, D. and Chen, X. (2022), "Effect of partially imperfect interface on dynamic response of a circular lined tunnel in an elastic half-space subjected to plane SH waves", ASCE Int. J. Geomech., 22(10), 04022165. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002549.
  51. Zhao, M., Gao, Z.D., Du, X.L., Wang, J.J. and Zhong, Z.L. (2019), "Response spectrum method for seismic soil-structure interaction analysis of underground structure", Bull. Earthq. Eng., 17(9), 5339-5363. https://doi.org/10.1007/s10518-019-00673-6.
  52. Zhao, M., Li, H., Cao, S. and Du, X. (2019), "An explicit time integration algorithm for linear and non-linear finite element analyses of dynamic and wave problems", Eng. Comput., 36(1), 161-177. https://doi.org/10.1108/EC-07-2018-0312.
  53. Zhao, M., Yin, H., Du, X., Liu, J. and Liang, L. (2015), "1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake", Earthq. Struct., 9(1), 173-194. https://doi.org/10.12989/eas.2015.9.1.173.
  54. Zhuang, H., Chen, G. and Wang, X. (2008), "Study on the earthquake responses of subway station built with different thicknesses of soft soil layers in the foundation", Earthq. Eng. Eng. Dyn., 28(6), 245-253. https://doi.org/10.1016/j.soildyn.2007.06.005
  55. Zhuang, H., Wang, X. and Chen, G. (2009), "Earthquake responses of subway station with different depths of soft soil", Chin. J. Geotech. Eng., 31(8), 1258-1266.