References
- Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Tounsi, A. (2020, "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. https://doi.org/10.12989/cac.2020.26.2.185.
- Ambartusumyan, S.A. (1962), "Contributions to the theory of anisotropic layered shells", Appl. Mech. Rev., 15, 345-249.
- Baby, B. and Das, L.G. (2017), "Numerical study of concrete dome structure using ANSYS 17.0", IJIRSET, 6(5), 8186-8193.
- Chao, W. (2017), "The applicability study on the multi-layer shell element method in steel concrete structure of shield building", 25th International Conference on Nuclear Engineering, Shanghai, July.
- Chepurnenko, A.S. (2017), "Stress-strain state of three-layered shallow shells under conditions of nonlinear creep", Mag. Civil Eng., 8, 156-168. https://doi.org/10.18720/MCE.76.14.
- Danush, G.L.M., Sowjanya, G.V. and Siddesh, T.M. (2017), "Finite element analysis of doubly curved thin concrete shells with square and rectangular plan 15 m×15 m and 15 m×10 m under uniformly distributed load using Sap2000", IRJET, 4(6), 560-564.
- Do, T.M.D. and Lam, T.Q.K. (2021), "Design parameters of double layers steel fiber concrete beams", Proceedings of the XIII International Scientific Conference on Architecture and Construction 2020, 299-321.
- Do, T.M.D. and Lam, T.Q.K. (2022). "Cracks in single-layer and multi-layer concrete beams", Transp. Res. Procedia, 63, 2589-2600. https://doi.org/10.1016/j.trpro.2022.06.298.
- Do, T.M.D., Lam, T.Q.K., Ngo, V.T. and Nguyen, T.T.N. (2022). "Two-layered steel fiber concrete beam with concrete grade change in layers", Resilient Infrastructure, Springer, Singapore.
- Do, T.M.D., Lam, T.Q.K., Nguyen, T.T.N., Ngo, V.T., Vu, H.H., Nguyen, T.C. and Doan, V.D. (2021), "Initial parameters affecting the multilayer doubly curved concrete shell roof", Adv. Civil Eng., 2021, Article ID 7999103. https://doi.org/10.1155/2021/7999103.
- Dong, S.L., Bai, G.B., Zheng, X.Q. and Zhao, Y. (2016), "A spherical lattice shell composed of six-bar tetrahedral units: Configuration, structural behavior, and prefabricated construction", Adv. Struct. Eng., 19(7), 1-12. https://doi.org/10.1177/136943321663 4489.
- Dong, S.L., Yuan, X.F. Pang, B. and Tian, W. (2011), "Structural form and mechanical properties of the suspended cylindrical lattice shells", Adv. Struct. Eng., 14(4), 689-698. https://doi.org/10.1260/1369-4332.14.4.689.
- Ferreira, A.J.M., Carrera, E., Cinefra, M. and Roque, C.M.C. (2011), "Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations", Comput. Mech., 48, 13-25. https://doi.org/10.1007/s00466-011-0579-4.
- Fialka, S.Y. (2014), "Quadrilateral shell finite element for anallysis of thin-walled reinforced concrete structures", Mag. Civil Eng., 5, 27-36. https://doi.org/10.5862/MCE.49.3
- Francesco, T., Nicholas, F., Erasmo, V. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B: Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020.
- Harish, B.A., Ramana, N.V. and Manjunatha, K. (2015), "Finite element analysis of doubly curved thin concrete shells", Int. J. Eng. Sci. Innov. Technol., 4(5), 48-57.
- Hawkinsa, W., Orra, J., Shepherd, P. and Ibell, T. (2019), "Design, construction and testing of a low carbon thin-shell concrete flooring system", Struct., 18, 60-71. https://doi.org/10.1016/j.istruc.2018.10.006.
- Jeyashree, T.M., Arunkumar, C. and Ashok, K.S. (2017), "Experimental and analytical study on funicular concrete shell foundation under ultimate loading", Asean J. Civil Eng., 18(6), 863-878.
- Kadam, S.S., Gandhe, G.R. and Tupe, D.H. (2017), "Forced vibration analysis of invented umbrella roof shell using Ansys", IJRPET, 3(5), 31-33.
- Kamper, C., Forman, P., Stallmann, T., Ahrens, M.A., Mark, P. and Schnel, K. (2017), "Optimised high-performance concrete shells for parabolic trough collectors", J. Int. Assoc. Shell Spat. Struct., 58(1), 105-119. https://doi.org/10.20898/j.iass.2017.191.843.
- Keikha, R., Heidari, A., Hosseinabadi, H. and Haghighi, M.S. (2018), "Classical shell theory for instability analysis of concrete pipes conveying nanofluid", Comput. Concrete, 22(2), 161-166. https://doi.org/1010.12989/cac.2018.22.2.161.
- Khai Lam, T.Q., Thi My, D.D., Ngo, V.T., Chuc Nguyen, T. and Phuoc Huynh, T. (2020), "Numerical simulation and experiment on steel fiber concrete beams", J. Phys.: Conf. Ser., 1425, 012007. https://doi.org/10.1088/1742-6596/1425/1/012007.
- Lam, T.Q.K., Do, T.M.D. and Nguyen, T.C. (2019), "Nano concrete aggregation with steel fibers: A problem to enhance the tensile strength of concrete", E3S Web Conf., 135, 03001. https://doi.org/10.1051/e3sconf/201913503001.
- Le, T.H. and Dang, V.H. (2013), "Stress-strain state of reinforced concrete shell roof with Gaussian curvature with different boundary conditions", Vietn. J. Construct., 2, 22-27.
- Li, W., Nguyen, T.N. and Zhoua, K. (2018), "Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach", Comput. Meth. Appl. Mech. Eng., 336, 111-134. https://doi.org/10.1016/j.cma.2018.02.018.
- Lin, F., Chen, C., Chen, J. and Chen, M. (2019), "Modelling and analysis for a cylindrical net-shell deployable mechanism", Adv. Struct. Eng., 22(15), 1-12. https://doi.org/10.1177/136943321985 9400.
- Meleka, N.N., Safan, M.A., Bashandy, A.A. and Abd-Elrazek, A.S. (2013), "Repairing and strengthening of elliptical paraboloid reinforced concrete shells with openings", Arch. Civil Eng., 59(3), 401-420. https://doi.org/10.2478/ace-2013-0022.
- Miao, F., Dong, S.L., Liang, H.Q., Wang, X.T., Zhu, X.L. and Ding, C. (2018), "Manufacture and prefabrication practice on a test model of a novel six-bar tetrahedral cylindrical lattice shell", Adv. Struct. Eng., 22(2), 1-10. https://doi.org/10.1177/1369433218784040.
- Miao, Z.W., Lu, X.Z., Jiang, J.J. and Ye, L.P. (2006), "Nonlinear FE model for RC shear walls based on multi-layer shell element and micro-plane constitutive model", Comput. Meth. Eng. Sci., https://doi.org/10.1007/978-3-540-48260-4_50.
- Ngo, V.T., Lam, T.Q.K., Do, T.M.D. and Nguyen, T.C. (2020), "Increased plasticity of nano concrete with steel fibers", Mag. Civil Eng., 93(1), 27-34. https://doi.org/10.18720/MCE.93.3.
- Nguyen, H.D. (2014), "Compute the two-dimensional curved shell, the rectangular plan by the approximate method", Build. Sci. Technol. J., 2, 28-33.
- Noh, H.C. (2005), "Ultimate strength of large scale reinforced concrete thin shell structures", Thin Wall. Struct., 43(9), 1418-1443. https://doi.org/10.1016/j.tws.2005.04.004.
- Qi, L., Zhang, X. and Huo, H. (2016), "Design bearing capacity of the initial imperfect lattice shell", Adv. Struct. Eng., 19(1), 14-22. https://doi.org/10.1177/1369433215618298.
- Schmidt, H. (2000), "Stability of steel shell structures: General report", J. Constr. Steel Res., 55, 159-181. https://doi.org/10.1016/S0143-974X(99)00084-X.
- Sivakumar, P., Manjunatha, K. and Harish, B.A. (2015), "Experimental and FE analysis of funicular shells", Int. J. Eng. Innov. Technol., 4(9), 178-186.
- Stefano, G., Varano, V., Tomasello, G. and Alfonsi, D. (2018), "R-Funicularity of form found shell structures", Eng. Struct., 157, 157-169. https://doi.org/10.1016/j.engstruct.2017.12.014.
- Tamboli, N. and Kulkarni, A.B. (2014), "Bending analysis of paraboloid of revolution shell", Int. J. Civil Eng. Res., 5(4), 307-314.
- Teng, J.G., Wong, H.T., Wang, Z.C. and Dong, S.L. (2005), "Steel-concrete composite shell roofs: structural concept and feasibility", Adv. Struct. Eng., 8(3), 287-307. https://doi.org/10.1260/1369433054349105.
- Veenendaal, D., Bakker, L. and Block, P. (2017), "Strutural design of the flexibly formed, meshreinforced concrete sandwich shell of nest hilo", J. Int. Assoc. Shell Spat. Struct., 58(1), 23-38. https://doi.org/10.20898/j.iass.2017.191.847.
- Verwimp, E., Tysmans, T., Mollaert, M. and Wozniak, M. (2016), "Prediction of the buckling behaviour of thin cement composite shells: Parameter study", Thin Wall. Struct., 108, 20-29. https://doi.org/10.1016/j.tws.2016.07.011.
- Vlasov, V.Z. (1964), General Theory of Shells and its Applications in Engineering, NASA TT F-99.
- Xie, L., Lu, Xiao., Lu, X., Huang, Y. and Ye, L. (2014), "Multilayer shell element for shear walls in opensees", Comput. Civil Build. Eng., 1190-1197.
- Zamani, R.K. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.