DOI QR코드

DOI QR Code

Experiment and simulation analysis on full scale double-layer concrete shell

  • Thanh Quang Khai, Lam (Faculty of Civil Engineering, Mien Tay Construction University) ;
  • Thi My Dung, Do (Faculty of Civil Engineering, Mien Tay Construction University)
  • Received : 2020.10.12
  • Accepted : 2022.11.02
  • Published : 2023.01.25

Abstract

The published studies usually used analytical method, numerical methods or experimental method to determine the stress-strain state and displacement of the single-layer or multi-layer curved shell types, but with a small scale model. However, a full scale multi-layer doubly curved concrete shell roof model should be researched. This paper presents the results of the experiment and simulation analysis involving stress-strain state, sliding between layers, the formation and development of the full scale double-layer doubly curved concrete shell roof when this shell begins to crack. The results of the this study have constructed the load-sliding strain relationship; strain diagram; stress diagram in the shell layers; the Nx, Ny membrane force diagram and deflection of shell. Thisresults by experimental method on a full scale model of concrete have clarified the working of multi-layer doubly curved concrete shell roof. The experimental and simulation results are compared with each other and compared with the Sap2000 software.

Keywords

References

  1. Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Tounsi, A. (2020, "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. https://doi.org/10.12989/cac.2020.26.2.185.
  2. Ambartusumyan, S.A. (1962), "Contributions to the theory of anisotropic layered shells", Appl. Mech. Rev., 15, 345-249.
  3. Baby, B. and Das, L.G. (2017), "Numerical study of concrete dome structure using ANSYS 17.0", IJIRSET, 6(5), 8186-8193.
  4. Chao, W. (2017), "The applicability study on the multi-layer shell element method in steel concrete structure of shield building", 25th International Conference on Nuclear Engineering, Shanghai, July.
  5. Chepurnenko, A.S. (2017), "Stress-strain state of three-layered shallow shells under conditions of nonlinear creep", Mag. Civil Eng., 8, 156-168. https://doi.org/10.18720/MCE.76.14.
  6. Danush, G.L.M., Sowjanya, G.V. and Siddesh, T.M. (2017), "Finite element analysis of doubly curved thin concrete shells with square and rectangular plan 15 m×15 m and 15 m×10 m under uniformly distributed load using Sap2000", IRJET, 4(6), 560-564.
  7. Do, T.M.D. and Lam, T.Q.K. (2021), "Design parameters of double layers steel fiber concrete beams", Proceedings of the XIII International Scientific Conference on Architecture and Construction 2020, 299-321.
  8. Do, T.M.D. and Lam, T.Q.K. (2022). "Cracks in single-layer and multi-layer concrete beams", Transp. Res. Procedia, 63, 2589-2600. https://doi.org/10.1016/j.trpro.2022.06.298.
  9. Do, T.M.D., Lam, T.Q.K., Ngo, V.T. and Nguyen, T.T.N. (2022). "Two-layered steel fiber concrete beam with concrete grade change in layers", Resilient Infrastructure, Springer, Singapore.
  10. Do, T.M.D., Lam, T.Q.K., Nguyen, T.T.N., Ngo, V.T., Vu, H.H., Nguyen, T.C. and Doan, V.D. (2021), "Initial parameters affecting the multilayer doubly curved concrete shell roof", Adv. Civil Eng., 2021, Article ID 7999103. https://doi.org/10.1155/2021/7999103.
  11. Dong, S.L., Bai, G.B., Zheng, X.Q. and Zhao, Y. (2016), "A spherical lattice shell composed of six-bar tetrahedral units: Configuration, structural behavior, and prefabricated construction", Adv. Struct. Eng., 19(7), 1-12. https://doi.org/10.1177/136943321663 4489.
  12. Dong, S.L., Yuan, X.F. Pang, B. and Tian, W. (2011), "Structural form and mechanical properties of the suspended cylindrical lattice shells", Adv. Struct. Eng., 14(4), 689-698. https://doi.org/10.1260/1369-4332.14.4.689.
  13. Ferreira, A.J.M., Carrera, E., Cinefra, M. and Roque, C.M.C. (2011), "Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations", Comput. Mech., 48, 13-25. https://doi.org/10.1007/s00466-011-0579-4.
  14. Fialka, S.Y. (2014), "Quadrilateral shell finite element for anallysis of thin-walled reinforced concrete structures", Mag. Civil Eng., 5, 27-36. https://doi.org/10.5862/MCE.49.3
  15. Francesco, T., Nicholas, F., Erasmo, V. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B: Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020.
  16. Harish, B.A., Ramana, N.V. and Manjunatha, K. (2015), "Finite element analysis of doubly curved thin concrete shells", Int. J. Eng. Sci. Innov. Technol., 4(5), 48-57.
  17. Hawkinsa, W., Orra, J., Shepherd, P. and Ibell, T. (2019), "Design, construction and testing of a low carbon thin-shell concrete flooring system", Struct., 18, 60-71. https://doi.org/10.1016/j.istruc.2018.10.006.
  18. Jeyashree, T.M., Arunkumar, C. and Ashok, K.S. (2017), "Experimental and analytical study on funicular concrete shell foundation under ultimate loading", Asean J. Civil Eng., 18(6), 863-878.
  19. Kadam, S.S., Gandhe, G.R. and Tupe, D.H. (2017), "Forced vibration analysis of invented umbrella roof shell using Ansys", IJRPET, 3(5), 31-33.
  20. Kamper, C., Forman, P., Stallmann, T., Ahrens, M.A., Mark, P. and Schnel, K. (2017), "Optimised high-performance concrete shells for parabolic trough collectors", J. Int. Assoc. Shell Spat. Struct., 58(1), 105-119. https://doi.org/10.20898/j.iass.2017.191.843.
  21. Keikha, R., Heidari, A., Hosseinabadi, H. and Haghighi, M.S. (2018), "Classical shell theory for instability analysis of concrete pipes conveying nanofluid", Comput. Concrete, 22(2), 161-166. https://doi.org/1010.12989/cac.2018.22.2.161.
  22. Khai Lam, T.Q., Thi My, D.D., Ngo, V.T., Chuc Nguyen, T. and Phuoc Huynh, T. (2020), "Numerical simulation and experiment on steel fiber concrete beams", J. Phys.: Conf. Ser., 1425, 012007. https://doi.org/10.1088/1742-6596/1425/1/012007.
  23. Lam, T.Q.K., Do, T.M.D. and Nguyen, T.C. (2019), "Nano concrete aggregation with steel fibers: A problem to enhance the tensile strength of concrete", E3S Web Conf., 135, 03001. https://doi.org/10.1051/e3sconf/201913503001.
  24. Le, T.H. and Dang, V.H. (2013), "Stress-strain state of reinforced concrete shell roof with Gaussian curvature with different boundary conditions", Vietn. J. Construct., 2, 22-27.
  25. Li, W., Nguyen, T.N. and Zhoua, K. (2018), "Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach", Comput. Meth. Appl. Mech. Eng., 336, 111-134. https://doi.org/10.1016/j.cma.2018.02.018.
  26. Lin, F., Chen, C., Chen, J. and Chen, M. (2019), "Modelling and analysis for a cylindrical net-shell deployable mechanism", Adv. Struct. Eng., 22(15), 1-12. https://doi.org/10.1177/136943321985 9400.
  27. Meleka, N.N., Safan, M.A., Bashandy, A.A. and Abd-Elrazek, A.S. (2013), "Repairing and strengthening of elliptical paraboloid reinforced concrete shells with openings", Arch. Civil Eng., 59(3), 401-420. https://doi.org/10.2478/ace-2013-0022.
  28. Miao, F., Dong, S.L., Liang, H.Q., Wang, X.T., Zhu, X.L. and Ding, C. (2018), "Manufacture and prefabrication practice on a test model of a novel six-bar tetrahedral cylindrical lattice shell", Adv. Struct. Eng., 22(2), 1-10. https://doi.org/10.1177/1369433218784040.
  29. Miao, Z.W., Lu, X.Z., Jiang, J.J. and Ye, L.P. (2006), "Nonlinear FE model for RC shear walls based on multi-layer shell element and micro-plane constitutive model", Comput. Meth. Eng. Sci., https://doi.org/10.1007/978-3-540-48260-4_50.
  30. Ngo, V.T., Lam, T.Q.K., Do, T.M.D. and Nguyen, T.C. (2020), "Increased plasticity of nano concrete with steel fibers", Mag. Civil Eng., 93(1), 27-34. https://doi.org/10.18720/MCE.93.3.
  31. Nguyen, H.D. (2014), "Compute the two-dimensional curved shell, the rectangular plan by the approximate method", Build. Sci. Technol. J., 2, 28-33.
  32. Noh, H.C. (2005), "Ultimate strength of large scale reinforced concrete thin shell structures", Thin Wall. Struct., 43(9), 1418-1443. https://doi.org/10.1016/j.tws.2005.04.004.
  33. Qi, L., Zhang, X. and Huo, H. (2016), "Design bearing capacity of the initial imperfect lattice shell", Adv. Struct. Eng., 19(1), 14-22. https://doi.org/10.1177/1369433215618298.
  34. Schmidt, H. (2000), "Stability of steel shell structures: General report", J. Constr. Steel Res., 55, 159-181. https://doi.org/10.1016/S0143-974X(99)00084-X.
  35. Sivakumar, P., Manjunatha, K. and Harish, B.A. (2015), "Experimental and FE analysis of funicular shells", Int. J. Eng. Innov. Technol., 4(9), 178-186.
  36. Stefano, G., Varano, V., Tomasello, G. and Alfonsi, D. (2018), "R-Funicularity of form found shell structures", Eng. Struct., 157, 157-169. https://doi.org/10.1016/j.engstruct.2017.12.014.
  37. Tamboli, N. and Kulkarni, A.B. (2014), "Bending analysis of paraboloid of revolution shell", Int. J. Civil Eng. Res., 5(4), 307-314.
  38. Teng, J.G., Wong, H.T., Wang, Z.C. and Dong, S.L. (2005), "Steel-concrete composite shell roofs: structural concept and feasibility", Adv. Struct. Eng., 8(3), 287-307. https://doi.org/10.1260/1369433054349105.
  39. Veenendaal, D., Bakker, L. and Block, P. (2017), "Strutural design of the flexibly formed, meshreinforced concrete sandwich shell of nest hilo", J. Int. Assoc. Shell Spat. Struct., 58(1), 23-38. https://doi.org/10.20898/j.iass.2017.191.847.
  40. Verwimp, E., Tysmans, T., Mollaert, M. and Wozniak, M. (2016), "Prediction of the buckling behaviour of thin cement composite shells: Parameter study", Thin Wall. Struct., 108, 20-29. https://doi.org/10.1016/j.tws.2016.07.011.
  41. Vlasov, V.Z. (1964), General Theory of Shells and its Applications in Engineering, NASA TT F-99.
  42. Xie, L., Lu, Xiao., Lu, X., Huang, Y. and Ye, L. (2014), "Multilayer shell element for shear walls in opensees", Comput. Civil Build. Eng., 1190-1197.
  43. Zamani, R.K. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.