Acknowledgement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References
- ACI-318 (2014), "Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard; Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14)", American Concrete Institute.
- Aggarwal, Y., Aggarwal, P., Sihag, P., Pal, M. and Kumar, A. (2019), "Estimation of punching shear capacity of concrete slabs using data mining techniques", Int. J. Eng., 32(7), 908-914. https://doi.org/10.5829/ije.2019.32.07a.02
- Amezquita-Sancheza, J., M. Valtierra-Rodriguez, and H. Adeli (2020), "Machine learning in structural engineering", Scientia Iranica, 27(6), 2645-2656. https://doi.org/10.24200/sci.2020.22091
- Barkhordari, M. and M. Es-haghi (2021), "Straightforward prediction for responses of the concrete shear wall buildings subject to ground motions using machine learning algorithms", Int. J. Eng., 34(7), 1586-1601. https://doi.org/10.5829/ije.2021.34.07a.04
- Barkhordari, M.S. and M. Tehranizadeh (2021), "Response estimation of reinforced concrete shear walls using artificial neural network and simulated annealing algorithm", Structures, 34, 1155-1168. https://doi.org/10.1016/j.istruc.2021.08.053.
- Barkhordari, M.S., D.C. Feng, and M. Tehranizadeh (2022), "Efficiency of hybrid algorithms for estimating the shear strength of deep reinforced concrete beams", Periodica Polytechnica Civil Eng., 66(2), 398-410. https://doi.org/10.3311/PPci.19323
- Barkhordari, M.S., M. Tehranizadeh, and M.H. Scott (2021a), "Numerical modelling strategy for predicting the response of reinforced concrete walls using Timoshenko theory", Magazine Concr. Res., 73(19), 1-23. https://doi.org/10.1680/jmacr.19.00542
- Barkhordari, M.S., M. Tehranizadeh, and M.H. Scott (2021b), "Numerical modelling strategy for predicting the response of reinforced concrete walls using Timoshenko theory", Magazine Concr. Res., 1-23. https://doi.org/10.1680/jmacr.19.00542.
- Brownlee, J. (2018), Better Deep Learning: Train Faster, Reduce Overfitting, and Make Better Predictions. Machine Learning Mastery.
- Chen, X.L., Fu, J.P., Yao, J.L. and Gan, J.F. (2018), "Prediction of shear strength for squat RC walls using a hybrid ANN-PSO model", Eng. Comput., 34(2), 367-383. https://doi.org/10.1007/s00366-017-0547-5
- Committee, A. (2019), "Building code requirements for structural concrete (ACI 318-19) and commentary": American Concrete Institute.
- Committee, N.S. (2005), "Seismic design criteria for structures, systems, and components in nuclear facilities", Am. Soc. Civil Eng., Reston, VA. https://doi.org/10.1061/9780784407622.
- Dietterich, T.G. (2000), "Ensemble methods in machine learning", Int. Workshop Multiple Classifier Syst., 1-15. https://doi.org/10.1007/3-540-45014-9_1.
- Duman, S., Kahraman, H.T., Guvenc, U. and Aras, S. (2021), "Development of a Levy flight and FDB-based coyote optimization algorithm for global optimization and real-world ACOPF problems", Soft Comput., 25(8), 6577-6617. https://doi.org/10.1007/s00500-021-05654-z
- Feng, D.C., Wang, W.J., Mangalathu, S. and Taciroglu, E. (2021), "Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls", J. Struct. Eng., 147(11), 04021173. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003115
- Gondia, A., M. Ezzeldin, and W. El-Dakhakhni (2020), "Mechanics-guided genetic programming expression for shear-strength prediction of squat reinforced concrete walls with boundary elements", J. Struct. Eng., 146(11), 04020223. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002734
- Guan, X., Burton, H., Shokrabadi, M. and Yi, Z. (2021), "Seismic drift demand estimation for steel moment frame buildings: From mechanics-based to data-driven models", J. Struct. Eng., 147(6), 04021058. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003004
- Gulec, C.K. (2009), Performance-Based Assessment and Design of Squat Reinforced Concrete Shear Walls, State University of New York at Buffalo.
- Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S. and Al-Atabany, W. (2021), "Honey badger algorithm: New metaheuristic algorithm for solving optimization problems", Math. Comput. Simul., 192, 84-110. https://doi.org/10.1016/j.matcom.2021.08.013
- Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E. and Weinberger, K.Q. (2017), "Snapshot ensembles: Train 1, get m for free", arXiv preprint arXiv:1704.00109.
- Jaeger, S. (2020), "The golden ratio of learning and momentum", arXiv preprint arXiv:2006.04751.
- Kassem, W. (2015), "Shear strength of squat walls: A strut-and-tie model and closed-form design formula", Eng. Struct., 84, 430-438. https://doi.org/10.1016/j.engstruct.2014.11.027
- Kolozvari, K., Kalbasi, K., Orakcal, K., Massone, L. M. and Wallace, J. (2019), "Shear-flexure-interaction models for planar and flanged reinforced concrete walls", Bull. Earthq. Eng., 17(12), 6391-6417. https://doi.org/10.1007/s10518-019-00658-5
- Loshchilov, I. and F. Hutter (2016), "Sgdr: Stochastic gradient descent with warm restarts", arXiv preprint arXiv:1608.03983.
- Lu, W. and R. Paffenroth (2021), "Neural network ensembles: Theory, training, and the importance of explicit diversity", J. Machine Learning Res. https://doi.org/10.48550/arXiv.2109.14117.
- Lundberg, S.M. and S.I. Lee (2017), "A unified approach to interpreting model predictions", Adv. Neural Inform. Proc. Syst., 30.
- Ma, J. and B. Li (2018), "Experimental and analytical studies on h-shaped reinforced concrete squat walls", ACI Struct. J., 115(2). https://doi.org/10.14359/51701144
- Ma, J., C.L. Ning, and B. Li (2020), "Peak shear strength of flanged reinforced concrete squat walls", J. Struct. Eng., 146(4), 04020037. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002575
- Massone, L.M. and F. Melo (2018), "General solution for shear strength estimate of RC elements based on panel response", Eng. Struct., 172, 239-252. https://doi.org/10.1016/j.engstruct.2018.06.038
- Massone, L.M. and M.A. Ulloa (2014), "Shear response estimate for squat reinforced concrete walls via a single panel model", Earthq. Struct., 7(5), 647-665. https://doi.org/10.12989/eas.2014.7.5.647
- Massone, L.M., C.N. Lopez, and K. Kolozvari (2021), "Formulation of an efficient shear-flexure interaction model for planar reinforced concrete walls", Eng. Struct., 243, 112680. https://doi.org/10.1016/j.engstruct.2021.112680
- Mohammed, S.J., H.A. Abdel-khalek, and S.M. Hafez (2021), "Predicting performance measurement of residential buildings using an artificial neural network", Civil Eng. J., 7(3), 461-476. https://doi.org/10.28991/cej-2021-03091666
- Moradi, M.J., Roshani, M.M., Shabani, A. and Kioumarsi, M. (2020), "Prediction of the load-bearing behavior of SPSW with rectangular opening by RBF network", Appl. Sci., 10(3), 1185. https://doi.org/10.3390/app10031185
- Naimi, A.I. and L.B. Balzer (2018), "Stacked generalization: an introduction to super learning", Eur. J. Epidemiol., 33(5), 459-464. https://doi.org/10.1007/s10654-018-0390-z
- Nguyen, D.D., Tran, V.L., Ha, D.H., Nguyen, V.Q. and Lee, T.H. (2021), "A machine learning-based formulation for predicting shear capacity of squat flanged RC walls", Structures, 29, 1734-1747. https://doi.org/10.1016/j.istruc.2020.12.054.
- Ning, C.L. and B. Li (2017), "Probabilistic development of shear strength model for reinforced concrete squat walls", Earthq. Eng. Struct. Dyn., 46(6), 877-897. https://doi.org/10.1002/eqe.2834
- Pizarro, P.N. and L.M. Massone (2021), "Structural design of reinforced concrete buildings based on deep neural networks", Eng. Struct., 241, 112377. https://doi.org/10.1016/j.engstruct.2021.112377
- Pizarro, P.N., et al. (2021), "Use of convolutional networks in the conceptual structural design of shear wall buildings layout", Eng. Struct., 239, 112311. https://doi.org/10.1016/j.engstruct.2021.112311
- Rojas, F., J. Anderson, and L. Massone (2016), "A nonlinear quadrilateral layered membrane element with drilling degrees of freedom for the modeling of reinforced concrete walls", Eng. Struct., 124, 521-538. https://doi.org/10.1016/j.engstruct.2016.06.024
- Siam, A.S., M. Ezzeldin, and W. El-Dakhakhni (2019), "Reliability of displacement capacity prediction models for reinforced concrete block shear walls", Structures, 20, 385-398. https://doi.org/10.1016/j.istruc.2019.05.002.
- Sutton, A.K. and M.J. Krashes (2020), "Integrating hunger with rival motivations", Trends Endocrinol. Metabolism, 31(7), 495-507. https://doi.org/10.1016/j.tem.2020.04.006
- Yang, Y., Chen, H., Heidari, A.A. and Gandomi, A.H. (2021), "Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts", Expert Syst. Appl., 177, 114864. https://doi.org/10.1016/j.eswa.2021.114864