DOI QR코드

DOI QR Code

Free vibrational behavior of bi-directional perfect and imperfect axially graded cylindrical shell panel under thermal environment

  • Pankaj S., Ghatage (School of Mechanical Engineering, Vellore Institute of Technology) ;
  • P. Edwin, Sudhagar (School of Mechanical Engineering, Vellore Institute of Technology)
  • 투고 : 2022.04.12
  • 심사 : 2022.12.14
  • 발행 : 2023.01.10

초록

This study presents the free vibrational responses of bi-directional axially graded cylindrical shell panels using 3D graded finite element approximation under a temperature field. The cylindrical shell panel is graded in two directions and made of metal-ceramic materials. To extract material properties, the Voigt model is combined with a Power-law material distribution. Convergence and validation studies are performed on the developed computational model to ensure its accuracy and effectiveness. Furthermore, a parametric study is performed to evaluate the developed model, which demonstrates that geometrical parameters, imperfect materials (porosity), support conditions, and surface temperature all have a significant impact on the free vibration responses of a bi-directional axially graded cylindrical shell panel in a thermal environment.

키워드

참고문헌

  1. Al-Furjan, M.S.H., Habibi, M., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  2. Al-Furjan, M.S.H., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150-113167. https://doi.org/10.1016/j.compstruct.2020.113150.
  3. Al-Osta, M.A., Saidi, H., Tounsi, A., Al-Dulaijan, S.U., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2021), "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart Struct. Syst., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499.
  4. Aragh, B.S., Hedayati, H., Farahani, E.B. and Hedayati, M. (2011), "A novel 2-d six-parameter power-law distribution for free vibration and vibrational displacements of two-dimensional functionally graded fiber-reinforced curved panels", Eur. J. Mech.-A/Solid., 30(6), 865-883. https://doi.org/10.1016/j.euromechsol.2011.05.002.
  5. Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615.
  6. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.
  7. Asgari, M. and Akhlaghi, M. (2011), "Natural frequency analysis of 2d-fgm thick hollow cylinder based on three-dimensional elasticity equations", Eur. J. Mech.-A/Solid., 30(2) 72-81. https://doi.org/10.1016/j.euromechsol.2010.10.002.
  8. Barati, M.R. and Hossein, S. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluid. Struct., 73, 125-136. https://doi.org/10.1016/j.compstruct.2017.06.004.
  9. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M, (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concrete, 26(5), 439-450. https://doi.org/10.12989/cac.2020.26.5.439.
  10. Bellifa, H., Selim, M.M., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Al-Zahrani, M.M. and Tounsi, A. (2021), "Influence of porosity on thermal buckling behavior of functionally graded beams", Smart Struct. Syst., 27(4), 719-728. https://doi.org/10.12989/sss.2021.27.4.719.
  11. Benaberrahmane, I., Mekerbi, M., Bouiadjra, R.B., Benyoucef, S., Selim, M.M., Tounsi, A. and Hussain, M. (2021), "Analytical evaluation of frequencies of bidirectional FG thick beams in thermal environment and resting on different foundation", Struct. Eng. Mech., 80(4), 365-375. https://doi.org/10.12989/sem.2021.80.4.365.
  12. Bhangale, R.K. and Ganesan, N. (2005), "Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells", J. Sound Vib., 288, 412-22. https://doi.org/10.1016/j.jsv.2005.04.008.
  13. Chai, Q. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
  14. Chen, M., Jin, G., Ma, X., Zhang, Y., Ye, T. and Liu, Z. (2018), "Vibration analysis for sector cylindrical shells with bidirectional functionally graded materials and elastically restrained edges", Compos. Part B: Eng., 153, 346-363. https://doi.org/10.1016/j.compositesb.2018.08.129.
  15. Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441.
  16. Dai, H.L., Rao, Y.N. and Dai, T.(2016), "A review of recent researches on fgm cylindrical structures under coupled physical interactions, 2000-2015", Compos. Struct., 152, 199-225. https://doi.org/10.1016/j.compstruct.2016.05.042.
  17. Ebrahimi, M.J. and Najafizadeh, M.M. (2014), "Free vibration analysis of two-dimensional functionally graded cylindrical shells", Appl. Math. Mod., 38(1), 308-324. https://doi.org/10.1016/j.apm.2013.06.015.
  18. Fantuzzi, N., Brischetto, S., Tornabene, F. and Viola, E. (2016), "2D and 3D shell models for the free vibration investigation of functionally graded cylindrical and spherical panels", Compos. Struct., 154, 573-590. https://doi.org/10.1016/j.compstruct.2016.07.076.
  19. Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837-111847. https://doi.org/10.1016/j.compstruct.2019.111837.
  20. Ghatage, P.S., Kar, V.R., Joshi, K.K., Sudhagar, P.E. and Kalyankar, R. (2022), "Free vibration characteristics of bidirectional functionally graded composite panels", Adv. Compos. Mater. Struct., 13-34. https://doi.org/10.1201/9781003158813.
  21. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
  22. Haddadpour, H., Mahmoudkhani, S. and Navazi, H.M. (2007), "Free vibration analysis of functionally graded cylindrical shells including thermal effects", Thin Wall. Struct., 45(6), 591-599. https://doi.org/10.1016/j.tws.2007.04.007.
  23. Hadji, L., Bernard, F., Safa, A. and Tounsi, A. (2021), "Bending and free vibration analysis for FGM plates containing various distribution shape of porosity", Adv. Mater. Res., 10(2), 115-135. https://doi.org/10.12989/amr.2021.10.2.115.
  24. Huang, X.L. and Shen, H.S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solid. Struct., 41(9-10), 2403-2427. https://doi.org/10.1016/j.ijsolstr.2003.11.012.
  25. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 1-15. https://doi.org/10.1007/s43452-021-00291-7.
  26. Kadoli, R. and Ganesan, N. (2006), "Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition", J. Sound Vib., 289(3), 450-480. https://doi.org/10.1016/j.jsv.2005.02.034.
  27. Kar, V.R. and Panda, S.K. (2015a), "Free vibration responses of temperature dependent functionally graded curved panels under thermal environment", Lat. Am. J. Solid. Struct., 12(11), 2006-2024. http://doi.org/10.1590/1679-78251691.
  28. Kar, V. . and Panda, S.K. (2015b), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  29. Kar, V.R. and Panda, S.K. (2016a), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control, 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102.
  30. Kar, V.R. and Panda, S.K. (2016b), "Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties", J. Therm. Stress., 39(8), 942-959. https://doi.org/10.1080/01495739.2016.1188623.
  31. Keddouri, A., Hadji, L. and Tounsi, A. (2019), "Static analysis of functionally graded sandwich plates with porosities", Adv. Mater. Res., 8(3), 155-177. https://doi.org/10.12989/amr.2019.8.3.155.
  32. Khorsand, M., Fu, K. and Tang, Y. (2019), "Multi-directional functionally graded materials for enhancing the durability of shell structures", Int. J. Press.Vess. Pip., 175, 103926. https://doi.org/10.1016/j.ijpvp.2019.103926.
  33. Khoshnoodi, H., Yas, M.H. and Samadinejad, A. (2016), "Dynamic analysis of multi-directional functionally graded panels and comparative modeling by ANN", J. Sol. Mech., 8(3), 482-494.
  34. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
  35. Li, S.R., Fu, X.H. and Batra, R.C. (2010), "Free vibration of three-layer circular cylindrical shells with functionally graded middle layer", Mech. Res. Commun., 37(6), 5775-5780. https://doi.org/10.1016/j.mechrescom.2010.07.006.
  36. Liu, G., Wu, S., Shahsavari, D., Karami, B. and Tounsi, A, (2022), "Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation", Eur. J. Mech.-A/Solid., 104649. https://doi.org/10.1016/j.euromechsol.2022.104649.
  37. Malekzadeh, P. and Heydarpour, Y. (2012), "Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment", Compos. Struct., 94(9), 2971-2981. https://doi.org/10.1016/j.compstruct.2012.04.011.
  38. Mehrabadi, S.J. and Aragh, B.S. (2013), "On the thermal analysis of 2-d temperature-dependent functionally graded open cylindrical shells", Compos. Struct., 96, 773-785. https://doi.org/10.1016/j.compstruct.2012.09.036.
  39. Najibi, A. and Shojaeefard, M.H. (2016), "Elastic mechanical stress analysis in a 2D-FGM thick finite length hollow cylinder with newly developed material model", Acta Mechanica Solida Sinica, 29(2), 178-191. https://doi.org/10.1016/S0894-9166(16)30106-9.
  40. Nemat-Alla, M. (2003), "Reduction of thermal stresses by developing two-dimensional functionally graded materials", Int. J. Solid. Struct., 40(26), 7339-7356. https://doi.org/10.1016/j.ijsolstr.2003.08.017.
  41. Pradhan, S.C., Loy, C.T., Lam, K.Y. and Reddy, J.N. (2000), "Vibration characteristics of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61(1), 111-129. https://doi.org/10.1016/S0003-682X(99)00063-8.
  42. Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056.
  43. Punera, D. and Kant, T. (2017), "Free vibration of functionally graded open cylindrical shells based on several refined higher order displacement models", Thin Wall. Struct., 119, 707-726. https://doi.org/10.1016/j.tws.2017.07.016.
  44. Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H., Butt, T.A. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin Wall. Struct., 172, 108783. https://doi.org/10.1016/j.tws.2021.108783.
  45. Rahimi, G.H., Ansari, R. and Hemmatnezhad, M. (2011), "Vibration of functionally graded cylindrical shells with ring support", Scientia Iranica, 18(6), 1313-1320. https://doi.org/10.1016/j.scient.2011.11.026.
  46. Ramteke, P.M. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://doi.org/10.12989/scs.2019.33.6.865.
  47. Saad, M., Hadji, L. and Tounsi, A. (2021), "Effect of porosity on the free vibration analysis of various functionally graded sandwich plates", Adv. Mater. Res., 10(4), 293-311. https://doi.org/10.12989/amr.2021.10.4.293.
  48. Sharma, N., Tiwari, P., Maiti, D.K. and Maity, D. (2021), "Free vibration analysis of functionally graded porous plate using 3-D degenerated shell element", Compos. Part C: Open Access, 6, 100208. https://doi.org/10.1016/j.jcomc.2021.100208.
  49. Simsek, M. (2015), "Bi-directional functionally graded materials (bdfgms) for free and forced vibration of timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
  50. Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of doublefgm nanoplates via a quasi-3d refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.
  51. Swaminathan, K. and Sangeetha, D.M. (2017), "Thermal analysis of FGM plates-A critical review of various modeling techniques and solution methods", Compos. Struct., 160, 43-60. https://doi.org/10.1016/j.compstruct.2016.10.047.
  52. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015), "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review" Compos. Struct., 120, 10-31. http://doi.org/10.1016/j.compstruct.2014.09.070.
  53. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  54. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Wave. Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1942310.
  55. Tahouneh, V. and Naei, M.H. (2016), "The effect of multi-directional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on twoparameter elastic foundations", Int. J. Adv. Struct. Eng., 8(1), 11-28. https://doi.org/10.1007/s40091-016-0110-4.
  56. Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.
  57. Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annul plate structures", J. Sound Vib., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031.
  58. Van Vinh, P. and Tounsi, A. (2022), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084.
  59. Wang, J., Wang, Y.Q. and Chai, Q. (2022), "Free vibration analysis of a spinning functionally graded spherical-cylindrical-conical shell with general boundary conditions in a thermal environment", Thin Wall. Struct., 180, 109768. https://doi.org/10.1016/j.tws.2022.109768.
  60. Wang, Y.Q., Wan, Y.H. and Zhang, Y.F. (2017), "Vibrations of longitudinally traveling functionally graded material plates with porosities", Eur. J. Mech.-A/Solid., 66, 55-68. https://doi.org/10.1016/j.euromechsol.2017.06.006.
  61. Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
  62. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  63. Wang, Y., Wu, H., Yang, F. and Wang, Q. (2021), "An efficient method for vibration and stability analysis of rectangular plates axially moving in fluid", Appl. Math. Mech., 42(2), 291-308. https://doi.org/10.1007/s10483-021-2701-5.
  64. Xu, H., Wang, Y.Q. and Zhang, Y. (2021), "Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method", Appl. Math. Mech., 91(12), 4817-4834. https://doi.org/10.1007/s00419-021-02036-7.
  65. Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
  66. Yin, Z., Gao, H. and Lin, G. (2021), "Bending and free vibration analysis of functionally graded plates made of porous materials according to a novel the semi-analytical method", Eng. Anal. Bound. Elem., 133, 185-199. https://doi.org/10.1016/j.enganabound.2021.09.006.
  67. Zafarmand, H., Salehi, M. and Asemi, K. (2015), "Three-dimensional free vibration and transient analysis of two directional functionally graded thick cylindrical panels under impact loading", Lat. Am. J. Solid. Struct., 12(2), 205-225. https://doi.org/10.1590/1679-78251099.
  68. Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Thermoelastic and vibration analysis of functionally graded cylindrical shells", Int. J. Mech. Sci., 5(19-10), 694-707. https://doi.org/10.1016/j.ijmecsci.2009.08.001.
  69. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. https://doi.org/10.12989/cac.2020.26.1.063