DOI QR코드

DOI QR Code

A hybrid-separate strategy for force identification of the nonlinear structure under impact excitation

  • Jinsong, Yang (School of Traffic and Transportation Engineering, Central South University) ;
  • Jie, Liu (School of Printing Packaging and Digital Media, Xi'an University of Technology) ;
  • Jingsong, Xie (School of Traffic and Transportation Engineering, Central South University)
  • Published : 2023.01.10

Abstract

Impact event is the key factor influencing the operational state of the mechanical equipment. Additionally, nonlinear factors existing in the complex mechanical equipment which are currently attracting more and more attention. Therefore, this paper proposes a novel hybrid-separate identification strategy to solve the force identification problem of the nonlinear structure under impact excitation. The 'hybrid' means that the identification strategy contains both l1-norm (sparse) and l2-norm regularization methods. The 'separate' means that the nonlinear response part only generated by nonlinear force needs to be separated from measured response. First, the state-of-the-art two-step iterative shrinkage/thresholding (TwIST) algorithm and sparse representation with the cubic B-spline function are developed to solve established normalized sparse regularization model to identify the accurate impact force and accurate peak value of the nonlinear force. Then, the identified impact force is substituted into the nonlinear response separation equation to obtain the nonlinear response part. Finally, a reduced transfer equation is established and solved by the classical Tikhonove regularization method to obtain the wave profile (variation trend) of the nonlinear force. Numerical and experimental identification results demonstrate that the novel hybrid-separate strategy can accurately and efficiently obtain the nonlinear force and impact force for the nonlinear structure.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (No. 51905422), China Postdoctoral Science Foundation (No. 2020M673613XB) and Natural Science Basic Research Program of Shaanxi (No. 2020JQ-630).

References

  1. Adams, D.E. and Allemang, R.J. (2000), "A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback", Mech. Syst. Signal Pr., 14(4), 637-656. https://doi.org/10.1006/mssp.2000.1292.
  2. Basta, E., Ghommem, M. and Emam, S. (2020), "Vibration suppression of nonlinear rotating metamaterial beams", Nonlin. Dyn., 101(1), 311-332. https://doi.org/10.1007/s11071-020-05796-z.
  3. Bertsekas, D. (2015), Convex Optimization Algorithms, Athena Scientific, Belmont, Massachusetts, USA.
  4. Bioucas-Dias, J.M. and Figueiredo, M.A.T. (2007), "A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration", IEEE Trans. Image Pr., 16(12), 2992-3004. https://doi.org/10.1109/TIP.2007.909319.
  5. Chen, C., Shi, Q., You, Z.F., Ge, H.Y. and Zhang, F. (2021), "A method to determine the shell layout scheme for equipment battlefield damage tests under artillery fire", Def. Technol., 17(2), 682-691. https://doi.org/10.1016/j.dt.2020.02.019.
  6. Chen, S.S., Donoho, D.L. and Saunders, M.A. (2001), "Atomic decomposition by basis pursuit", SIAM Rev., 43(1), 129-159. https://doi.org/10.1137/S003614450037906X.
  7. Friswell, M. and Mottershead, J.E. (1995), Finite Element Model Updating in Structural Dynamics, Springer, Dordrecht, Netherlands.
  8. Golub, G.H., Heath, M. and Wahba, G. (1979), "Generalized cross-validation as a method for choosing a good ridge parameter", Technometric., 21(2), 215-223. https://doi.org/10.1080/00401706.1979.10489751.
  9. Guan, H.Q., Feng, K., Yu, K., Cao, Y.L. and Wu, Y.H. (2020), "Nonlinear dynamic responses of a rigid rotor supported by active bump-type foil bearings", Nonlin. Dyn., 100(3), 2241-2264. https://doi.org/10.1007/s11071-020-05608-4.
  10. Gunawan, F.E. (2012), "Levenberg-marquardt iterative regularization for the pulse-type impact-force reconstruction", J. Sound Vib., 331(25), 5424-5434. https://doi.org/10.1016/j.jsv.2012.07.025.
  11. Hansen, P.C. (1994), "Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems", Numer. Algorithm., 6(1), 1-35. https://doi.org/10.1007/BF02149761.
  12. Hu, B., Liu, J., Liu, S., Li, B. and Lei, X. (2020), "Simultaneous multi-parameter identification algorithm for clearance-type nonlinearity", Mech. Syst. Signal Pr., 139, 106423. https://doi.org/10.1016/j.ymssp.2019.106423.
  13. Inoue, H., Harrigan, J.J. and Reid, S.R. (2001), "Review of inverse analysis for indirect measurement of impact force", Appl. Mech. Rev., 54(6), 503-524. https://doi.org/10.1115/1.1420194.
  14. Jacquelin, E., Bennani, A. and Hamelin, P. (2003), "Force reconstruction: Analysis and regularization of a deconvolution problem", J. Sound Vib., 265(1), 81-107. https://doi.org/10.1016/S0022-460X(02)01441-4.
  15. Leclere, Q., Pezerat, C., Laulagnet, B. and Polac, L. (2005), "Indirect measurement of main bearing loads in an operating diesel engine", J. Sound Vib., 286(1), 341-361. https://doi.org/10.1016/j.jsv.2004.10.027.
  16. Li, Q. and Lu, Q. (2018), "Time domain force identification based on adaptive ℓq regularization", J. Vib. Control, 24(23), 5610- 5626. https://doi.org/10.1177/1077546318761968.
  17. Li, Z., Feng, Z. and Chu, F. (2014), "A load identification method based on wavelet multi-resolution analysis", J. Sound Vib., 333(2), 381-391. https://doi.org/10.1016/j.jsv.2013.09.026.
  18. Liu, J. and Li, B. (2018), "A novel strategy for response and force reconstruction under impact excitation", J. Mech. Sci. Technol., 32(8), 3581-3596. https://doi.org/10.1007/s12206-018-0709-4.
  19. Liu, J., Ding, T., Liu, S. and Hu, B. (2022), "A novel strategy for force identification of nonlinear structures", J. Low Freq. Noise Vib. Act. Control, 41(1), 167-181. https://doi.org/0.1177/14613484211033433. 1033433
  20. Liu, J., Xie, J., Li, B. and Hu, B. (2020), "Regularized cubic B-spline collocation method with modified L-curve criterion for impact force identification", IEEE Access, 8, 36337-36349. https://doi.org/10.1109/ACCESS.2020.2973919.
  21. Marchesiello, S. and Garibaldi, L. (2008), "Identification of clearance-type nonlinearities", Mech. Syst. Signal Pr., 22(5), 1133-1145. https://doi.org/10.1016/j.ymssp.2007.11.004.
  22. Overschee, P.V. and Moor, B.D. (1996), Subspace Identification for Linear Systems: Theory-Implementation-Applications, Springer, Boston, MA, US.
  23. Pan, C., Ye, X., Zhou, J. and Sun, Z. (2020), "Matrix regularization-based method for large-scale inverse problem of force identification", Mech. Syst. Signal Pr., 140, 106698. https://doi.org/10.1016/j.ymssp.2020.106698.
  24. Pan, C.D., Yu, L. and Liu, H.L. (2017), "Identification of moving vehicle forces on bridge structures via moving average tikhonov regularization", Smart Mater. Struct., 26(8), 085041. https://doi.org/10.1088/1361-665X/aa7a48.
  25. Qiao, B., Ao, C., Mao, Z. and Chen, X. (2020), "Non-convex sparse regularization for impact force identification", J. Sound Vib., 477, 115311. https://doi.org/10.1016/j.jsv.2020.115311.
  26. Qiao, B., Liu, J., Liu, J., Yang, Z. and Chen, X. (2019b), "An enhanced sparse regularization method for impact force identification", Mech. Syst. Signal Pr., 126, 341-367. https://doi.org/10.1016/j.ymssp.2019.02.039.
  27. Qiao, B., Mao, Z., Liu, J., Zhao, Z. and Chen, X. (2019a), "Group sparse regularization for impact force identification in time domain", J. Vib. Control, 445, 44-63. https://doi.org/10.1016/j.jsv.2019.01.004.
  28. Qiao, B., Zhang, X., Wang, C., Zhang, H. and Chen, X. (2016), "Sparse regularization for force identification using dictionaries", J. Vib. Control, 368, 71-86. https://doi.org/10.1016/j.jsv.2016.01.030.
  29. Qiu, H., Huang, J. and Zheng, Z. (2021), "Simultaneous Identification of structures and unknown seismic excitations for chain-like systems with unknown mass using partial absolute responses", Struct. Eng. Mech., 79(6), 699-709. https://doi.org/10.12989/sem.2021.79.6.699.
  30. Samagassi, S., Khamlichi, A., Driouach, A. and Jacquelin, E. (2015), "Reconstruction of multiple impact forces by wavelet relevance vector machine approach", J. Sound Vib., 359, 56-67. https://doi.org/10.1016/j.jsv.2015.08.014.
  31. Sanchez, J. and Benaroya, H. (2014), "Review of force reconstruction techniques", J. Sound Vib., 333(14), 2999-3018. https://doi.org/10.1016/j.jsv.2014.02.025.
  32. Uhl, T. (2007), "The inverse identification problem and its technical application", Arch. Appl. Mech., 77(5), 325-337. https://doi.org/10.1007/s00419-006-0086-9.
  33. Wang, C., Zhang, X., Qiao, B., Chen, X. and Cao, H. (2018), "Milling force identification from acceleration signals using regularization method based on tsvd in peripheral milling", Procedia CIRP, 77, 18-21. https://doi.org/10.1016/j.procir.2018.08.195.
  34. Wang, L., Liu, J. and Lu, Z.R. (2020), "Bandlimited force identification based on sinc-dictionaries and tikhonov regularization", J. Sound Vib., 464, 114988. https://doi.org/10.1016/j.jsv.2019.114988.
  35. Wang, L.J., Deng, Q.C. and Xie, Y.X. (2017), "A new conjugate gradient algorithm for solving dynamic load identification", Struct. Eng. Mech., 64(2), 271-278. https://doi.org/10.12989/sem.2017.64.2.271.
  36. Yan, G., Sun, H. and Buyukozturk, O. (2017), "Impact load identification for composite structures using bayesian regularization and unscented kalman filter", Struct. Control. Hlth. Monit., 24(5), e1910. https://doi.org/10.1002/stc.1910.