References
- Abbas, A.F. and Hamzah, A.A. (2022), "Studying the thermal influence on the vibration of rotating blades", Measur. Sci. Rev., 22, 65-72. https://doi.org/10.2478/msr-2022-0008.
- Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031.
- Al-Basyouni, K.S. and Mahmoud, S.R. (2021), "Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder", Struct. Eng. Mech., 79(5), 593-599. https://doi.org/10.12989/sem.2021.79.5.593.
- Alipour, S.M., Kiani, Y. and Eslami, M.R. (2016), "Rapid heating of FGM rectangular plates", Acta Mech, 227, 421-436. https://doi.org/10.1007/s00707-015-1461-9.
- Ansari, E. and Setoodeh, A.R. (2020), "Applying isogeometric approach for free vibration, mechanical, and thermal buckling analyses of functionally graded variable-thickness blades", J. Vib. Control, 26, 1-17, https://doi.org/10.1177/1077546320915336.
- Ansari, E., Setoodeh, A.R. and Rabczuk, T. (2020), "Isogeometric-stepwise vibrational behavior of rotating functionally graded blades with variable thickness at an arbitrary stagger angle subjected to thermal environment", Compos. Struct., 244, 112281. https://doi.org/10.1016/j.compstruct.2020.112281.
- Burzynski, S., Chroscielewski, J., Daszkiewicz, K. and Witkowski W. (2016), "Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory", Compos. B. Eng., 107, 203-213. https://doi.org/10.1016/j.compositesb.2016.09.015.
- Cao, D., Yi, L.B., Hui, Y.M. and Wei, Z. (2017), "Free vibration analysis of a pre-twisted sandwich blade with thermal barrier coatings layers", Sci. Chin. Tech. Sci., 60, 1747-1761. https://doi.org /10.1007/s11431-016-9011-5.
- Chapra, S.C. and Canale, R.P. (2011), Numerical Methods for Engineers, Mcgraw-hill, New York, USA.
- Chen, Y., Jin, G., Ye, T. and Chen, M. (2021), "Quasi-3D dynamic model for free vibration analysis of rotating pre-twisted functionally graded blades", J. Sound Vib., 499, 115990. https://doi.org/10.1016/j.jsv.2021.115990.
- Gasik, M.M. (1998), "Micromechanical modelling of functionally graded materials", Comput. Mater. Sci., 13, 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5.
- Goldenveizer, A.L. (1961), Theory of Elastic Thin Shells, Pergamon Press, Oxford.
- Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stresses-Advanced Theory and Applications, Springer, Amsterdam.
- Karami, B., Shahsavar, D., Janghorban, M. and Li, L. (2019), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.
- Karmakar, A. and Sinha, P.K. (1997), "Finite element free vibration analysis of rotating laminated composite pretwisted cantilever plates", J. Reinf. Plast. Compos., 16, 1461-1491. https://doi.org/10.1177/073168449701601603.
- Lee, YH., Bae, SI. and Kim, J.H. (2016), "Thermal buckling behaviour of functionally graded plates based on neutral surface", Compos. Struct., 137, 208-214. https://doi.org/10.1016/j.compstruct.2015.11.023.
- Leissa, A.W. and Ewing, M.S. (1983), "Comparison of beam and shell theories for the vibrations of thin turbomachinery blades" J. Eng. Power, 105(2), 383-392. https://doi.org/10.1115/1.3227427.
- Librescu, L., Oh, S.Y., Song, O. and Kang, H.S. (2008), "Dynamics of advanced rotating blades made of functionally graded materials and operating in a high-temperature field", J. Eng. Math., 61, 1-16. https://doi.org/10.1007/s10665-007-9155-5.
- Liu, L.T., Hao, Y.X., Zhang, W. and Chen, J. (2018), "Free vibration analysis of rotating pretwisted functionally graded sandwich blades", Inte. J. Aerosp. Eng., 2018, Article ID 2727452. https://doi.org/10.1155/2018/2727452.
- Liu, Y., Su., S., Huang, H. and Liang Y. (2019), "Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane", Compos. Part B Eng., 168, 236-242. https://doi.org/10.1016/j.compositesb.2018.12.063.
- Mota, A.F., Loja, M.A.R., Barbosa, J.I. and Rodrigues J.A. (2020), "Porous functionally graded plates: An assessment of the influence of shear correction factor on static behaviour", Math. Comput. Appl., 25, 1-26. https://doi.org/10.3390/mca25020025.
- Na, S., Kim, K.W., Lee, B.H. and Marzocca, P. (2009), "Dynamic response analysis of rotating functionally graded thin-walled blades exposed to steady temperature and external excitation", J. Therm. Stress., 32, 209-225. https://doi.org/10.1080/01495730802507956.
- Nemati, A.R. and Mahmoodabadi, M.J. (2020), "Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments", Arch. Appl. Mech., 90, 883-915. https://doi.org/10.1007/s00419-019-01646-6.
- Niu, Y., MingHui, Y. and Wei, Z. (2021), "Nonlinear transient responses of rotating twisted FGM cylindrical panels", Sci. Chin. Tech., 64, 317-330. https://doi.org/10.1007/s11431-019-1472-1.
- Oh, S.Y., Librescu, L. and Song, O. (2003), "Vibration of turbomachinery rotating blades made-up of functionally graded materials and operating in a high temperature field", Acta Mech., 166, 69-87. https://doi.org/10.1007/s00707-003-0049-y.
- Oh, Y. and Yoo, H.H. (2016), "Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials", Int. J. Mech. Sci., 119, 68-79. https://doi.org/10.1016/j.ijmecsci.2016.10.002.
- Oh, Y. and Yoo, H.H. (2020), "Thermo-elastodynamic coupled model to obtain natural frequency and stretch characteristics of a rotating blade with a cooling passage", Int. J. Mech. Sci., 165, 105194. https://doi.org/10.1016/j.ijmecsci.2019.105194.
- Panchore, V. (2022), "Meshless local Petrov-Galerkin method for rotating Rayleigh beam", Struct. Eng. Mech., 81(5), 607-616. https://doi.org/10.12989/sem.2022.81.5.607.
- Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory", Eur. J. Mech. A Solid., 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
- Pandey, S. and Pradyumna, S. (2018), "Analysis of functionally graded sandwich plates using a higher-order layerwise theory", Compos. B-Eng., 153, 325-336. https://doi.org/10.1016/j.compositesb.2018.08.121.
- Qatu, M.S. (2004), Vibration of Laminated Shells and Plates, Elsevier Academic Press.
- Rafiee, M., Nitzsche, F. and Labrosse, M. (2017), "Dynamics, vibration and control of rotating composite beams and blades: A critical review", Thin Wall. Struct., 119, 795-819. https://doi.org/10.1016/j.tws.2017.06.018.
- Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21, 593-626. https://doi.org/10.1080/01495739808956165.
- Setoodeh, A.R, Shojaee, M. and Malekzadeh, P. (2019), "Vibrational behaviour of doubly curved smart sandwich shells with FGCNTRC face sheets and FG porous core", Compos. Part B Eng., 165, 798-822. https://doi.org/10.1016/j.compositesb.2019.01.022.
- Shahsavari, D. and Karami, B. (2022), "Assessment of Reuss, Tamura, and LRVE models for vibration analysis of functionally graded nanoplates", Arch. Civil Mech. Eng., 22(2), 1-13. https://doi.org/10.1007/s43452-022-00409.
- Shojaee, M., Setoodeh, A.R. and Malekzadeh, P. (2017), "Vibration of functionally graded CNTs-reinforced skewed cylindrical panels using a transformed differential quadrature method", Acta Mech., 228, 2691-2711. https://doi.org/10.1007/s00707-017-1846-z.
- Singha, T.D., Bondyopadhay, T. and Karmakar, A. (2021b), "Thermoelastic free vibration of rotating pretwisted sandwich conical shell panels with functionally graded carbon nanotube-reinforced composite face sheets using higher-order shear deformation theory", Proc. Inst. Mech. Eng., Part L, J Mater: Des. Appl., 235(10), 2227-2253. https://doi.org/10.1177/1464420721999.
- Singha, T.D., Bondyopadhay, T. and Karmakar, A. (2022), "A numerical solution for thermal free vibration analysis of rotating pre-twisted FG-GRC cylindrical shell panel", Mech. Adv. Mater. Struct., 19, 1537-6494. https://doi.org/10.1080/15376494.2022.2067924.
- Singha, T.D., Rout, M., Bandyopadhyay, T. and Karmakar, A. (2021a), "Free vibration of rotating pretwisted FG-GRC sandwich conical shells in thermal environment using HSDT", Compos. Struct., 257, 113144. https://doi.org/10.1016/j.compstruct.2020.113144.
- Sungsoo N., Kim, K.W., Lee, B.H. and Marzocca P., (2009), "Dynamic response analysis of rotating functionally graded thin-walled blades exposed to steady temperature and external excitation", J. Therm. Stress., 32, 209-225. https://doi.org/10.1080/01495730802507956.
- Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, IOM Communications, 1st Edition, London.
- Tauchert, T.R. (1989), "Thermal shock of orthotropic rectangular plates", J. Therm. Stress., 12, 241-258. https://doi.org/10.1080/01495738908961964.
- XiaoAn, H., Qiang, Z., Xiao-Guang, Y. and Duo-Qi, S. (2019), "Viscoplastic analysis method of an aeroengine turbine blade subjected to transient thermo-mechanical loading", Int. J. Mech. Sci., 152, 247-256. https://doi.org/10.1016/j.ijmecsci.2019.01.007.
- Zhao, T.Y., Jiang, L.P., Pan, H.G., Yang, J. and Kitipnchai, S. (2021), "Coupled free vibration of a functionally graded pretwisted blade-shaft system reinforced with grapheme nanoplatelets", Compos. Struct., 262, 113362. https://doi.org/10.1016/j.compstruct.2020.113362.
- Zhou, L. (2022), "Computerized responses of spinning NEMS via numerical and mathematical modelling", Struct. Eng. Mech., 82(5), 629-641. https://doi.org/10.12989/sem.2022.82.5.629.