DOI QR코드

DOI QR Code

A computationally efficient numerical integration scheme for non-linear plane-stress/strain FEM applications using one-point constitutive model evaluation

  • Hector R., Amezcua (Institute of Engineering, National Autonomous University of Mexico, UNAM) ;
  • Amado G., Ayala (Institute of Engineering, National Autonomous University of Mexico, UNAM)
  • 투고 : 2022.08.04
  • 심사 : 2022.12.14
  • 발행 : 2023.01.10

초록

This work presents a proposal for employing reduced numerical integration in the formulation of the 4-node quadrilateral solid finite element. The use of these low-order integration rules leads to numerical instabilities such as those producing the hourglass effect. The proposed procedure allows evaluating a given constitutive model only in one integration point, achieving an attractive computational cost reduction and, also, successfully controls the hourglass effect. A validation of the proposal is included and discussed throughout the paper. To show the efficiency of the proposal, several application examples of masonry structures are studied and discussed. To represent the non-linear mechanical behaviour of masonry a plastic-damage model is implemented within the application of this sub-integration scheme. Also, in order to have a full and computationally efficient strategy to determine the behaviour of masonry structures, involving its evolution to collapse, a homogenization technique with a macro-modeling approach is used. The methodology discussed throughout this paper demonstrates a substantial computational cost reduction and an improved approximation of the non-linear problem evidenced by a reduction of up to 85% of the computational time for some cases.

키워드

과제정보

This research was supported by the General Directorate for Affairs of Academic Personnel (DGAPA) of the National Autonomous University of Mexico, through the PAPIIT project number IN106917. Additionally, the first author greatly appreciates the graduate scholarship provided by the National Council for Science and Technology (CONACYT). Finally, the authors thank the meaningful contributions of Dr. Juan Gutierrez.

참고문헌

  1. Ambrosetti, C. (2000), "On the seismic behavior of a structural model of an arched monument: Numerical analysis with a friction model (in italian)", Eng. Dissertation, Politecnico di Milano, Milan, Italy.
  2. Amezcua, H.R. (2022), "Numerical approximation of the nonlinear behaviour of masonry structures through the finite element method: A computationally efficient strategy", Ph.D. Dissertation, UNAM, Mexico City, Mexico.
  3. Bassa, B., Sabourin, F. and Brunet, M. (2012), "A new nine-node solid-shell finite element using complete 3D constitutive laws", Int. J. Numer. Meth. Eng., 92(7), 589-636. https://doi.org/10.1002/nme.4318.
  4. Belytschko, T. and Bachrach, W.E. (1986), "Efficient implementation of quadrilaterals with high coarse-mesh accuracy", Comput. Meth. Appl. Mech. Eng., 54(3), 279-301. https://doi.org/10.1016/0045-7825(86)90107-6.
  5. Belytschko, T. and Bindeman, L.P. (1991), "Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems", Comput. Meth. Appl. Mech. Eng., 88(3), 311-340. https://doi.org/10.1016/0045-7825(91)90093-L.
  6. Belytschko, T., Liu, W.K., Moran, B. and Elkhodary, K. (2014), Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, NY, USA.
  7. Belytschko, T., Ong, J.S.J., Liu, W.K. and Kennedy, J.M. (1984), "Hourglass control in linear and nonlinear problems", Comput. Meth. Appl. Mech. Eng., 43(3), 251-276. https://doi.org/10.1016/0045-7825(84)90067-7.
  8. Bettaieb, A., de Sena, J., de Sousa, R., Valente, R., Habraken, A. and Duchene, L. (2015), "On the comparison of two solid-shell formulations based on in-plane reduced and full integration schemes in linear and non-linear applications", Finite Elem. Anal. Des., 107, 44-59. https://doi.org/10.1016/j.finel.2015.08.005.
  9. Bilko, P. and Malyszko, L. (2020), "An orthotropic elastic-plastic constitutive model for masonry walls", Mater., 13(18). https://doi.org/10.3390/ma13184064.
  10. Cavuslu, M. (2022), "3D seismic assessment of historical stone arch bridges considering effects of normal-shear directions of stiffness parameters between discrete stone elements", Struct. Eng. Mech., 83(2), 207-227. https://doi.org/10.12989/sem.2022.83.2.207.
  11. Cook, R.D. (1974), "Improved two-dimensional finite element", J. Struct. Div., ASCE, 100(9), 1851-1863. https://doi.org/10.1061/JSDEAG.0003877.
  12. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Method, John Wiley & Sons, NY, USA.
  13. Correia, J.R., Branco, F.A. and de Brito, J. (2007), "Analysis of Sao Vicente de Fora Church, Portugal", Proc. Inst. Civil Eng.-Struct. Build., 160(4), 187-196. https://doi.org/10.1680/stbu.2007.160.4.187.
  14. De Domenico, D., Falsone, G. and Laudani, R. (2018), "In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach", Struct. Eng. Mech., 68(4), 423-442. https://doi.org/10.12989/sem.2018.68.4.423.
  15. Flanagan, D.P. and Belytschko, T. (1981), "A uniform strain hexahedron and quadrilateral with orthogonal hourglass control", Int. J. Numer. Meth. Eng., 17(5), 679-706. https://doi.org/10.1002/nme.1620170504.
  16. Flores, F. (2016), "A simple reduced integration hexahedral solid-shell element for large strains", Comput. Meth. Appl. Mech. Eng., 303, 260-287. https://doi.org/10.1016/j.cma.2016.01.013.
  17. Fredriksson, M. and Ottosen, N. (2004), "Fast and accurate 4-node quadrilateral", Int. J. Numer. Meth. Eng., 61(11), 1809-1834. https://doi.org/10.1002/nme.1133.
  18. Giamundo, V., Sarhosis, V., Lignola, G.P., Sheng, Y. and Manfredi, G. (2014), "Evaluation of different computational modelling strategies for the analysis of low strength masonry structures", Eng. Struct., 73, 160-169. https://doi.org/10.1016/j.engstruct.2014.05.007.
  19. Giordano, A., Mele, E. and De Luca, A. (2002), "Modelling of historical masonry structures: Comparison of different approaches through a case study", Eng. Struct., 24(8), 1057-1069. https://doi.org/10.1016/S0141-0296(02)00033-0.
  20. Hamdy, G., Kamal, O., El-Hariri, M. and El-Salakawy, T. (2018), "Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP", Struct. Eng. Mech., 65(5), 611-619. https://doi.org/10.12989/sem.2018.65.5.611.
  21. Lopez, J., Oller, S., Onate, E. and Lubliner, J. (1999), "A homogeneous constitutive model for masonry", Int. J. Numer. Meth. Eng., 46(10), 1651-1671. https://doi.org/10.1002/(SICI)1097-0207(19991210)46:10%3C1651::AID-NME718%3E3.0.CO;2-2.
  22. Lourenco, P.B. (1996), "Computational strategies for masonry structures", Ph.D. Dissertation, TU Delft, Delft, The Netherlands.
  23. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  24. Milani, G. and Bertolesi, E. (2017), "Quasi-analytical homogenization approach for the non-linear analysis of in-plane loaded masonry panels", Constr. Build. Mater., 146, 723-743. https://doi.org/10.1016/j.conbuildmat.2017.04.008.
  25. Oller, S. (2001), Fracture Mechanics. A Global Approach, CIMNE, Barcelona, Spain. (in spanish)
  26. Oller, S., Oliver, J., Lubliner, J. and Onate, E. (1988), "A plastic-damage constitutive model for frictional materials. Part I: Fundamental variables, yield and potential functions (in spanish)", Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 4(4), 397-431. https://doi.org/10.1016/0020-7683(89)90050-4.
  27. Pari M., Van de Graaf, A., Hendriks, M. and Rots, J. (2021), "A multi-surface interface model for sequentially linear methods to analyse masonry structures", Eng. Struct., 238, 112-123. https://doi.org/10.1016/j.engstruct.2021.112123.
  28. Pegon P., Pinto, A.V. and Geradin, M. (2001), "Numerical modelling of stone-block monumental structures", Comput. Struct., 79(22), 2165-2181. https://doi.org/10.1016/S0045-7949(01)00070-0.
  29. Pela, L., Cervera, M. and Roca, P. (2013), "An orthotropic damage model for the analysis of masonry structures", Constr. Build. Mater., 41, 957-967. https://doi.org/10.1016/j.conbuildmat.2012.07.014.
  30. Pinto, A.V., Verzeletti, G., Molina, F.J. and Plumier, C. (1998), "Seismic tests on the S. Vicente de Fora Model", Proceedings of MONUMENT-98, Workshop on Seismic Performance of Monuments, National Laboratory for Civil Engineering, Lisbon.
  31. Poliotti, M. and Bairan, M. (2019), "A new concrete plastic-damage model with an evolutive dilatancy parameter", Eng. Struct., 189, 541-549. https://doi.org/10.1016/j.engstruct.2019.03.086.
  32. Raijmakers, T.M. and Vermeltfoort, A.T. (1992), "Deformation controlled tests in masonry shear walls (in Dutch)", B-92-1156, Eindhoven University of Technology.
  33. Sarhosis, V. (2011), "Computational modelling of low bond strength masonry", Ph.D. Dissertation, University of Leeds, Leeds, UK.
  34. Simo, J.C. and Taylor, R.L. (1986), "A return mapping algorithm for plane stress elastoplasticity", Int. J. Numer. Meth. Eng., 22(3), 649-670. https://doi.org/10.1002/nme.1620220310.
  35. Taylor, R.L. (2013), FEAP-A Finite Element Analysis Program (8.5), Programmer Manual, Department of Civil and Environmental Engineering, University of California at Berkeley, CA, USA.
  36. Vermeltfoort, A.T. and Raijmakers, T.M. (1993), "Deformation Controlled Tests in Masonry Shear Walls. Part 2 (in Dutch)", TUE/BKO/93.08, Eindhoven University of Technology.
  37. Xie, Z., Sousamli, M., Messali, F. and Rots, J. (2021), "A sub-stepping iterative constitutive model for cyclic crackingcrushing-shearing in masonry interface elements", Comput. Struct., 257. https://doi.org/10.1016/j.compstruc.2021.106654.
  38. Zengin, B., Toydemir, B., Ulukaya, S., Oktay, D., Yuzer, N. and Kocak, A. (2018), "The effect of mortar type and joint thickness on mechanical properties of conventional masonry walls", Struct. Eng. Mech., 67(6), 579-585. https://doi.org/10.12989/sem.2018.67.6.579.
  39. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2013), The Finite Element Method: Its Basis and Fundamentals, Seventh Edition, Elsevier, Amsterdam, The Netherlands.
  40. Zucchini, A. and Lourenco, P.B. (2009), "A micro-mechanical homogenisation model for masonry: Application to shear walls", Int. J. Solid. Struct., 46(3-4), 871-886. https://doi.org/10.1016/j.ijsolstr.2008.09.034.