DOI QR코드

DOI QR Code

Distribution of near-fault input energy over the height of RC frame structures and its formulation

  • Taner, Ucar (Department of Architecture, Dokuz Eylul University)
  • Received : 2022.02.04
  • Accepted : 2022.12.02
  • Published : 2023.01.10

Abstract

Energy-based seismic design and evaluation methods are promising to be involved in the next generation design codes. Accordingly, determining the distribution of earthquake input energy demand among floor levels is quite imperative in order to develop an energy-based seismic design procedure. In this paper, peak floor input energy demands are achieved from relative input energy response histories of several reinforced concrete (RC) frames. A set of 22 horizontal acceleration histories selected from recorded near-fault earthquakes and scaled in time domain to be compatible with the elastic acceleration design spectra of Turkish Seismic Design Code are used in time history analyses. The distribution of the computed input energy per mass values and the arithmetic means through the height of the considered RC frames are presented as a result. It is found that spatial distribution of input energy per mass is highly affected by the number of stories. Very practical yet consistent formulation of distributing the total input energy to story levels is achieved, as a most important contribution of the study.

Keywords

References

  1. Akbas, B., Shen, J. and Hao, H. (2001), "Energy approach in performance-based seismic design of steel moment resisting frames for basic safety objective", Struct. Des. Tall Spec. Build., 10(3), 193-217. https://doi.org/10.1002/tal.172.
  2. Akiyama, H. (1985), Earthquake-Resistant Limit-State Design for Buildings, University of Tokyo Press, Tokyo.
  3. Akiyama, H. (1988), "Earthquake resistant design based on the energy concept", 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
  4. Alavi, B. and Krawinkler, H. (2001), "Effects of near-fault ground motions on frame structures", Report No. 138, The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA.
  5. Alici, F. and Sucuoglu, H. (2016), "Prediction of input energy spectrum: Attenuation models and velocity spectrum scaling", Earthq. Eng. Struct. Dyn., 45(13), 2137-2161. https://doi.org/10.1002/eqe.2749.
  6. Alici, F.S. and Sucuoglu, H. (2018), "Elastic and inelastic nearfault input energy spectra", Earthq. Spectra, 34(2), 611-637. https://doi.org/10.1193/090817EQS175M.
  7. Amiri, G.G., Darzi, G.A. and Amiri, J.V. (2008), "Design elastic input energy spectra based on Iranian earthquakes", Can. J. Civil Eng., 35(6), 635-646. https://doi.org/10.1139/L08-013.
  8. Baker, W.B. and Cornell, C.A. (2008), "Vector-valued intensity measures for pulse-like near-fault ground motions", Eng. Struct., 30(4), 1048-1057. https://doi.org/10.1016/j.engstruct.2007.07.009.
  9. Beiraghi, H. (2017), "Earthquake effects on the energy demand of tall reinforced concrete walls with buckling-restrained brace outriggers", Struct. Eng. Mech., 63(4), 521-536. https://doi.org/10.12989/sem.2017.63.4.521.
  10. Beiraghi, H. (2018), "Energy demands in reinforced concrete wall piers coupled by buckling restrained braces subjected to nearfault earthquake", Steel Compos. Struct., 27(6), 703-716. https://doi.org/10.12989/scs.2018.274.6.703.
  11. Beiraghi, H. and Hedayati, M. (2021), "Optimum location of second outrigger in RC core walls subjected to NF earthquakes", Steel Compos. Struct., 38(6), 671-690. https://doi.org/10.12989/scs.2021.38.6.671.
  12. Benavent-Climent, A., Lopez-Almansa, F. and Bravo-Gonzalez, D.A. (2010), "Design energy input spectra for moderate-to-high seismicity regions based on Colombian earthquakes", Soil Dyn. Earthq. Eng., 30(11), 1129-1148. https://doi.org/10.1016/j.soildyn.2010.04.022.
  13. Bulajic, B.D., Bajic, S. and Stojnic, N. (2018), "The effects of geological surroundings on earthquake-induced snow avalanche prone areas in the Kopaonik region", Cold Reg. Sci. Tech., 149, 29-45. https://doi.org/10.1016/j.coldregions.2018.02.005.
  14. Bulajic, B.D., Manic, M.I. and Ladinovic, D. (2013), "Effects of shallow and deep geology on seismic hazard estimates - a case study of pseudo-acceleration response spectra for the northwestern Balkans", Nat. Hazard., 69(1), 573-588. https://doi.org/10.1007/s11069-013-0726-7.
  15. Calim, F., Gullu, A. and Yuksel, E. (2021), "Evaluation of different approaches to estimate seismic input energy and top displacement demand of moment resisting frames", International Workshop on Energy-Based Seismic Engineering, May.
  16. Chapman, M.C. (1999), "On the use of elastic input energy for seismic hazard analysis", Earthq. Spectra, 15(4), 607-635. https://doi.org/10.1193/1.1586064.
  17. Cheng, Y., Lucchini, A. and Mollaioli, F. (2014), "Proposal of new ground motion prediction equations for elastic input energy spectra", Earthq. Struct., 7(4), 485-510. https://doi.org/10.12989/eas.2014.7.4.485.
  18. Cheng, Y., Lucchini, A. and Mollaioli, F. (2020), "Ground-motion prediction equations for constant-strength and constant-ductility input energy spectra", Bull. Earthq. Eng., 18(1), 37-55. https://doi.org/10.1007/s10518-019-00725-x.
  19. Chou, C.C. and Uang, C.M. (2003), "A procedure for evaluating seismic energy demand of framed structures", Earthq. Eng. Struct. Dyn., 32(2), 229-244. https://doi.org/10.1002/eqe.221.
  20. Chou, C.C. and Uang, C.M. (2004), "Evaluating distribution of seismic energy in multistory frames", 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, August.
  21. Decanini, L., Mollaioli, F. and Mura, A. (2001), "Equivalent SDOF systems for the estimation of seismic response of multistory frame structures", WIT Trans. Built Environ., 57, 101-110. https://doi.org/ 10.2495/ERES010101.
  22. Decanini, L.D. and Mollaioli, F. (1998), "Formulation of elastic earthquake input energy spectra", Earthq. Eng. Struct. Dyn., 27(12), 1503-1522. https://doi.org/10.1002/(SICI)1096-9845(199812)27:12<1503::AID-EQE797>3.0.CO;2-A.
  23. Decanini, L.D. and Mollaioli, F. (2001), "An energy-based methodology for the assessment of seismic demand", Soil Dyn. Earthq. Eng., 21(2), 113-137. https://doi.org/10.1016/S0267-7261(00)00102-0.
  24. Dindar, A.A., Yalcin, C., Yuksel, E., Ozkaynak, H. and Buyukozturk, O. (2015), "Development of earthquake energy demand spectra", Earthq. Spectra, 31(3), 1667-1689. http://doi.org/10.1193/011212EQS010M.
  25. Erduran, E. (2020), "Hysteretic energy demands in multi-degreeof-freedom systems subjected to earthquakes", Build., 10(12), 220. https://doi.org/10.3390/buildings10120220.
  26. Fajfar, P. and Vidic, T. (1994), "Consistent inelastic design spectra: Hysteretic and input energy", Earthq. Eng. Struct. Dyn., 23(5), 523-527. https://doi.org/10.1002/eqe.4290230505.
  27. Ganjavi, B. and Rezagholilou, A.R. (2018), "An intensity measure for seismic input energy demand of multi-degree-of-freedom systems", Civil Eng. Infrastr. J., 51(2), 373-388. https://doi.org/10.7508/ceij.2018.02.008.
  28. Gullu, A., Yuksel, E., Yalcin, C., Anil Dindar, A., Ozkaynak, H. and Buyukozturk, O. (2019), "An improved input energy spectrum verified by the shake table tests", Earthq. Eng. Struct. Dyn., 48(1), 27-45. https://doi.org/10.1002/eqe.3121.
  29. Hosseini, R., Rashidi, M., Bulajic, B.D. and Karbasi Arani, K., (2020), "Multi-objective optimization of three different SMALRBs for seismic protection of a benchmark highway bridge against real and synthetic ground motions", Appl. Sci., 10(12), 4076. https://doi.org/10.3390/app10124076
  30. Housner, G. (1959), "Behavior of structures during earthquake", J. Eng. Mech. Div., 85, 109-129. https://doi.org/10.1061/JMCEA3.0000102
  31. Housner, G.W. (1956), "Limit design of structures to resist earthquakes", 1st World Conference on Earthquake Engineering, Berkeley, California.
  32. Kalkan, E. and Kunnath, S.K. (2007), "Effective cyclic energy as a measure of seismic demand", J. Earthq. Eng., 11(5), 725-51. https://doi.org/10.1080/13632460601033827.
  33. Kohrangi, M., Vamvatsikos, D. and Bazzurro, P. (2019), "Pulselike versus non-pulse-like ground motion records: Spectral shape comparisons and record selection strategies", Earthq. Eng. Struct. Dyn., 48(1), 46-64. https://doi.org/10.1002/eqe.3122.
  34. Leger, P. and Dussault, S. (1992), "Seismic-energy dissipation in MDOF structures", J. Struct. Eng., 118(5), 1251-1269. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1251).
  35. Lei, C., Xianguo, Y. and Kangning, L. (2008), "Analysis of seismic energy response and distribution of RC frame structures", 14th World Conference on Earthquake Engineering, Beijing, China, October.
  36. Liu, H., Tang, Z. and Chen, Y. (2021), "Earthquake input energy prediction considering structural transient response", Soil Dyn. Earthq. Eng., 144, 106661. https://doi.org/10.1016/j.soildyn.2021.106661.
  37. Lopez-Almansa, F., Yazgan, A.U. and Benavent-Climent, A. (2013), "Design energy input spectra for high seismicity regions based on Turkish registers", Bull. Earthq. Eng., 11(4), 885-912. https://doi.org/10.1007/s10518-012-9415-2.
  38. Merter, O. (2019), "An investigation on the maximum earthquake input energy for elastic SDOF systems", Earthq. Struct., 16(4), 487-499. https://doi.org/10.12989/eas.2019.16.4.487.
  39. Mezgebo, M.G. (2015), "Estimation of earthquake input energy, hysteretic energy and its distribution in MDOF structures", Ph.D. Dissertation, Syracuse University, New York.
  40. Mezgebo, M.G. and Lui, E.M. (2017), "A new methodology for energy-based seismic design of steel moment frames", Earthq. Eng. Eng. Vib., 16(1), 131-152. https://doi.org/10.1007/s11803-017-0373-1.
  41. Morales-Beltran, M., Turan, G., Yildirim, U. and Paul, J. (2018), "Distribution of strong earthquake input energy in tall buildings equipped with damped outriggers", Struct. Des. Tall Spec. Build., 27(8), e1463. https://doi.org/10.1002/tal.1463.
  42. Morales-Beltran, M.G., Turan, G. and Yildirim, U. (2017). "Distribution of earthquake input energy in high rise buildings with viscously damped outriggers", 4th International Conference on Earthquake Engineering and Seismology, Eskisehir, Turkey, October.
  43. Okur, A. and Erberik, M.A. (2012), "Adaptation of energy principles in seismic design of Turkish RC frame structures. Part I: Input energy spectrum", 15th World Conference on Earthquake Engineering, Lisboa, Portugal, September.
  44. PEER (2022), PEER Ground Motion Database, NGA-West2. Pacific Earthquake Engineering Research Center. http://ngawest2.berkeley.edu/
  45. Prasanth, T., Ghosh, S. and Collins, K.R. (2008), "Estimation of hysteretic energy demand using concepts of modal pushover analysis", Earthq. Eng. Struct. Dyn., 37(6), 975-990. https://doi.org/10.1002/eqe.802.
  46. Razavi, S.A., Siahpolo, N. and Adeli, M.M. (2021), "The effects of period and nonlinearity on energy demands of MDOF and ESDOF systems under pulse-type near-fault earthquake records", Sci. Iranica, 28(3), 1195-1211. https://doi.org/10.24200/sci.2020.55639.4327.
  47. Riddell, R. and Garcia, J.E. (2001), "Hysteretic energy spectrum and damage control", Earthq. Eng. Struct. Dyn., 30(12), 1791-1816. https://doi.org/10.1002/eqe.93.
  48. SAP2000 Ultimate (2018), Integrated Solution for Structural Analysis and Design, Version 20.2.0, Computers and Structures Inc. (CSI), Berkeley, California, U.S.A.
  49. Sehhati, R., Rodriguez-Marek, A., ElGawady, M. and Cofer, W.F. (2011), "Effects of near-fault ground motions and equivalent pulses on multi-story structures", Eng. Struct., 33(3), 767-779. https://doi.org/10.1016/j.engstruct.2010.11.032.
  50. Shargh, F.H. and Hosseini, M. (2011), "An optimal distribution of stiffness over the height of shear buildings to minimize the seismic input energy", J. Seismol. Earthq. Eng., 13(1), 25-32.
  51. Shargh, G.B. and Barati, R. (2021). "Estimation of inelastic seismic input energy", Soil Dyn. Earthq. Eng., 142, 106505. https://doi.org/10.1016/j.soildyn.2020.106505.
  52. Somerville, P.G. (2003), "Magnitude scaling of the near fault rupture directivity pulse", Phys. Earth Planet. Inter., 137(1-4), 201-212. https://doi.org/10.1016/S0031-9201(03)00015-3.
  53. Somerville, P.G. (2005), "Engineering characterization of near fault ground motions", 2005 NZSEE Conference, New Zealand.
  54. Takewaki, I. and Fujita, K. (2009), "Earthquake input energy to tall and base-isolated buildings in time and frequency dual domains", Struct. Des. Tall Spec. Build., 18(6), 589-606. https://doi.org/10.1002/tal.497.
  55. TSDC (2018), Turkish Seismic Design Code, Ministry of Public Works and Settlement, Ankara, Turkey.
  56. Tu, B.B. and Zhao, D. (2018), "Distribution of accumulated irrecoverable hysteretic energy in MDOF structures", Multidisc. Model. Mater. Struct., 14(2), 202-215. https://doi.org/10.1108/MMMS-05-2017-0028.
  57. Uang, C.M. and Bertero, V. (1990), "Evaluation of seismic energy in structures", Earthq. Eng. Struct. Dyn., 19(1), 77-90. https://doi.org/10.1002/eqe.4290190108.
  58. Ucar, T. (2020), "Computing input energy response of MDOF systems to actual ground motions based on modal contributions", Earthq. Struct., 18(2), 263-273. https://doi.org/10.12989/eas.2020.18.2.263.