Acknowledgement
The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4250045DSR13).
References
- Abhilash, P., Nayak, D.K., Sangoju, B., Kumar, R. and Kumar, V. (2021), "Effect of nano-silica in concrete, A review", Constr. Build. Mater., 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347.
- Agar, O., Tekin, H.O., Sayyed, M., Korkmaz, M.E., Culfa, O. and Ertugay, C. (2019), "Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral", Result. Phys., 12, 237-243. https://doi.org/10.1016/j.rinp.2018.11.053.
- Agwa, I.S., Omar, O.M., Tayeh, B.A. and Abdelsalam, B.A. (2020), "Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete", Constr. Build. Mater., 235, 117541. https://doi.org/10.1016/j.conbuildmat.2019.117541.
- Agwa, I.S., Zeyad, A.M., Tayeh, B.A. and Amin, M. (2022), "Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete", J. Build. Eng., 104773. https://doi.org/10.1016/j.jobe.2022.104773.
- Agwa, I.S., Zeyad, A.M., Tayeh, B.A., Adesina, A., de Azevedo, A.R., Amin, M. and Hadzima-Nyarko, M. (2022), "A comprehensive review on the use of sugarcane bagasse ash as a supplementary cementitious material to produce eco-friendly concretes", Mater. Today: Proc., 65(2), 688-696. https://doi.org/10.1016/j.matpr.2022.03.264.
- Ahmad, M.N., Nadeem, S., Javed, M., Iqbal, S., Hassan, S.U., Aljazzar, S.O., ... & Abd-Rabboh, H.S. (2022), "Improving the thermal behavior and flame-retardant properties of poly (oanisidine)/mmt nanocomposites incorporated with poly (oanisidine) and clay nanofiller", Molec., 27(17), 5477. https://doi.org/10.3390/molecules27175477.
- Ahmad, M.N., Nadeem, S., Soltane, R., Javed, M., Iqbal, S., Kanwal, Z., Farid, M.F., Rabea, S., Elkaeed, E.B. and Aljazzar, S.O. (2022), "Synthesis, characterization, and antibacterial potential of poly (o-anisidine)/baso4 nanocomposites with enhanced electrical conductivity", Proc., 10(9), 1878. https://doi.org/10.3390/pr10091878.
- Ahmad, S., Ullah, H., Rehman, Z.U., Nawaz, M., Uddin, I., Parkash, A., Alamri, H.R., Alsaiari, N.S. and Javed, M.S. (2022), "Investigation on crystal-structure, thermal and electrical properties of pvdf nanocomposites with cobalt oxide and functionalized multi-wall-carbon-nanotubes", Nanomater., 12(16), 2796. https://doi.org/10.3390/nano12162796.
- Akbulut, S., Sehhatigdiri, A., Eroglu, H. and Celik, S. (2015), "A research on the radiation shielding effects of clay, silica fume and cement samples", Radiat. Phys. Chem., 117, 88-92. https://doi.org/10.1016/j.radphyschem.2015.08.003.
- Akkurt, I. and Canakci, H. (2011), "Radiation attenuation of boron doped clay for 662, 1173 and 1332 kev gamma rays", International Journal Of Radiation Research.
- Alaka, H.A. and Oyedele, L.O. (2016), "High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer", J. Build. Eng., 8, 81-90. https://doi.org/10.1016/j.jobe.2016.09.008.
- Aldred, J.M., Holland, T.C., Morgan, D.R., Roy, D.M., Bury, M.A., Hooton, R.D., Olek, J., Scali, M.J., Detwiler, R.J. and Jaber, T.M. (2006), "Guide for the use of silica fume in concrete", ACI-American Concrete Institute-Committee: Farmington Hills, MI, USA.
- Ali, R., Aslam, Z., Shawabkeh, R.A., Asghar, A. and Hussein, I.A. (2020), "Bet, ftir, and raman characterizations of activated carbon from waste oil fly ash", Turk. J. Chem., 44(2), 279-295. https://doi.org/10.3906/kim-1909-20.
- Al-Muntaser, A.A., Pashameah, R.A., Sharma, K., Alzahrani, E. and Tarabiah, A.E. (2022), "Reinforcement of structural, optical, electrical, and dielectric characteristics of cmc/pva based on gnp/zno hybrid nanofiller: Nanocomposites materials for energy-storage applications", Int. J. Energy Res., https://doi.org/10.1002/er.8695.
- Alomayri, T. (2021), "Mechanical and fracture behaviour of micro steel fibre-reinforced fly ash-based geopolymer paste containing nano caco3", J. Taibah Univ. Sci., 15(1), 391-406. https://doi.org/10.1080/16583655.2021.1984864.
- Alomayri, T. (2022), "Mechanical and microstructure characteristics of alkali-activated coal ash with α-phase ultrafine al2o3 nanoparticles and basalt fibres", J. Taibah Univ. Sci., 16(1), 646-659. https://doi.org/10.1080/16583655.2022.2098632.
- Al-Tersawy, S.H., El-Sadany, R.A. and Sallam, H. (2021), "Experimental gamma-ray attenuation and theoretical optimization of barite concrete mixtures with nanomaterials against neutrons and gamma rays", Constr. Build. Mater., 289, 123190. https://doi.org/10.1016/j.conbuildmat.2021.123190.
- Ameri, F., de Brito, J., Madhkhan, M. and Taheri, R.A. (2020), "Steel fibre-reinforced high-strength concrete incorporating copper slag: Mechanical, gamma-ray shielding, impact resistance, and microstructural characteristics", J. Build. Eng., 29, 101118. https://doi.org/10.1016/j.jobe.2019.101118.
- Amin, M. and Tayeh, B.A. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459.
- Amin, M., Attia, M.M., Agwa, I.S., Elsakhawy, Y., Abu El-hassan, K. and Abdelsalam, B.A. (2022), "Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties", Case Stud. Constr. Mater., 17, e01528. https://doi.org/10.1016/j.cscm.2022.e01528.
- Amin, M., El-Aziz, A., Agwa, I.S. and Abu El-Hassan, K. (2022), "Properties and microstructure of high strength concrete incorporating different supplementary cementitious materials", Key Eng. Mater., 921, 247-257. https://doi.org/10.4028/pz32u07.
- Amin, M., Hakeem, I.Y., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022), "Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperatures", Case Stud. Constr. Mater., 16, e01063. https://doi.org/10.1016/j.cscm.2022.e01063.
- Amin, M., Tayeh, B.A. and Agwa, I.S. (2020), "Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete", J. Clean. Prod., 273, 123073. https://doi.org/10.1016/j.jclepro.2020.123073.
- Amin, M., Tayeh, B.A., Kandil, M.A., Agwa, I.S. and Abdelmagied, M.F. (2022), "Effect of rice straw ash and palm leaf ash on the properties of ultrahigh-performance concrete", Case Stud. Constr. Mater., 17, e01266. https://doi.org/10.1016/j.cscm.2022.e01266.
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181.
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates", Constr. Build. Mater., 302, 124196. https://doi.org/10.1016/j.conbuildmat.2021.124196.
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2022), "Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete", Constr. Build. Mater., 320, 126233. https://doi.org/10.1016/j.conbuildmat.2021.126233.
- Ashoor, M., Khorshidi, A. and Sarkhosh, L. (2020), "Appraisal of new density coefficient on integrated-nanoparticles concrete in nuclear protection", Kerntechnik, 85(1), 9-14. https://doi.org/10.3139/124.190016.
- Attia, M.M., Abdelsalam, B.A., Amin, M., Agwa, I.S. and Abdelmagied, M.F. (2022), "Metal-nails waste and steel slag aggregate as alternative and eco-friendly radiation shielding composites", Build., 12(8), 1120. https://doi.org/10.3390/buildings12081120.
- Ban, C.C., Khalaf, M.A., Ramli, M., Ahmed, N.M., Ahmad, M.S., Ali, A.M.A., Dawood, E.T. and Ameri, F. (2021), "Modern heavyweight concrete shielding: Principles, industrial applications and future challenges, review", J. Build. Eng., 102290. https://doi.org/10.1016/j.jobe.2021.102290.
- Bashter, I.I. (1997), "Calculation of radiation attenuation coefficients for shielding concretes", Ann. Nucl. Energy, 24(17), 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0.
- Beigi, M.H., Berenjian, J., Omran, O.L., Nik, A.S. and Nikbin, I.M. (2013), "An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete", Mater. Des., 50, 1019-1029. https://doi.org/10.1016/j.matdes.2013.03.046.
- Beushausen, H. and Luco, L.F. (2016), "Performance-based specifications and control of concrete durability", RILEM TC, 66-72. https://doi.org/10.1007/978-94-017-7309-6.
- Bheel, N., Mahro, S.K. and Adesina, A. (2020), "Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete", Environ. Sci. Pollut. Res., 28(5), 5682-5692. https://doi.org/10.1007/s11356-020-10882-1.
- Chaunsali, P., Uvegi, H., Osmundsen, R., Laracy, M., Poinot, T., Ochsendorf, J. and Olivetti, E. (2018), "Mineralogical and microstructural characterization of biomass ash binder", Cement Concrete Compos., 89, 41-51. https://doi.org/10.1016/j.cemconcomp.2018.02.011.
- Choi, H.J. (2019), "Agricultural bio-waste for adsorptive removal of crude oil in aqueous solution", J. Mater. Cycl. Waste Manage., 21(2), 356-364. https://doi.org/10.1007/s10163-018-0797-3.
- de Azevedo, A.R., Amin, M., Hadzima-Nyarko, M., Agwa, I.S., Zeyad, A.M., Tayeh, B.A. and Adesina, A. (2022), "Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the brazilian perspective", Clean. Mater., 3, 100040. https://doi.org/10.1016/j.clema.2021.100040.
- Dyson, N.A. (1993), Radiation Physics with Applications in Medicine and Biology, USA.
- Ecke, H., Menad, N. and Lagerkvist, A. (2002), "Treatment-oriented characterization of dry scrubber residue from municipal solid waste incineration", J. Mater. Cycl. Waste Manage., 4(2), 117-126. https://doi.org/10.1007/s10163-001-0063-x.
- Elkady, H.M., Yasien, A.M., Elfeky, M.S. and Serag, M.E. (2019), "Assessment of mechanical strength of nano silica concrete (nsc) subjected to elevated temperatures", J. Struct. Fire Eng., 10(1), 90-109. https://doi.org/10.1108/JSFE-10-2017-0041.
- Ersundu, A., Buyukyildiz, M., Ersundu, M.C., Sakar, E. and Kurudirek, M. (2018), "The heavy metal oxide glasses within the wo3-moo3-teo2 system to investigate the shielding properties of radiation applications", Prog. Nucl. Energy, 104, 280-287. https://doi.org/10.1016/j.pnucene.2017.10.008.
- Gencel, O., Bozkurt, A., Kam, E. and Korkut, T. (2011), "Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions", Ann. Nucl. Energy, 38(12), 2719-2723. https://doi.org/10.1016/j.anucene.2011.08.010.
- Ghosh, S., Bhattacharjya, S. and Chakraborty, S. (2007), "Compressive behaviour of short-fibre-reinforced concrete", Mag. Concrete Res., 59(8), 567-574. https://doi.org/10.1680/macr.2007.59.8.567.
- Gokce, H.S., Ozturk, B.C., Cam, N.F. andic-Cakir, O.J.C. and Composites, C. (2018), "Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture", Cement Concrete Compos., 92, 56-69. https://doi.org/10.1016/j.cemconcomp.2018.05.015.
- Hadzima-Nyarko, M., Nyarko, K.E., Djikanovic, D. and Brankovic, G. (2021), "Microstructural and mechanical characteristics of self-compacting concrete with waste rubber", Struct. Eng. Mech., 78(2), 175-186. https://doi.org/10.12989/sem.2021.78.2.175.
- Hakeem, I.Y., Agwa, I.S., Tayeh, B.A. and Abd-Elrahman, M.H. (2022), "Effect of using a combination of rice husk and olive waste ashes on high-strength concrete properties", Case Stud. Constr. Mater., 17, e01486. https://doi.org/10.1016/j.cscm.2022.e01486.
- Hakeem, I.Y., Amin, M., Abdelsalam, B.A., Tayeh, B.A., Althoey, F. and Agwa, I.S. (2022), "Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete", Struct. Eng. Mech., 82(3), 295-312. https://doi.org/10.12989/sem.2022.82.3.295.
- Hakeem, I.Y., Amin, M., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022), "Effects of nano sized sesame stalk and rice straw ashes on high-strength concrete properties", J. Clean. Prod., 370, 133542. https://doi.org/10.1016/j.jclepro.2022.133542.
- Han, B., Zhang, L. and Ou, J. (2017), Radiation Shielding Concrete, Smart and Multifunctional Concrete Toward Sustainable Infrastructures, Springer.
- Hanzic, L. and Ho, J.C.M. (2017), "Multi-sized fillers to improve strength and flowability of concrete", Adv. Cement Res., 29(3), 112-124. https://doi.org/10.1680/jadcr.16.00100.
- Hassan, H., Badran, H., Aydarous, A. and Sharshar, T. (2015), "Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays", Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atom., 360, 81-89. https://doi.org/10.1016/j.nimb.2015.07.126.
- Heniegal, A.M., Agwa, I.S., Youssef, H. and Amin, M. (2022), "Properties and durability of high performance heavy weight concrete incorporating black sand and different heavy weight aggregates types", NeuroQuantology, 20(8), 2056-2069.
- Heniegal, A.M., Amin, M., Nagib, S., Youssef, H. and Agwa, I.S. (2022), "Effect of nano ferrosilicon and heavyweight fine aggregates on the properties and radiation shielding of ultrahigh performance heavyweight concrete", Case Stud. Constr. Mater., 17, e01543. https://doi.org/10.1016/j.cscm.2022.e01543.
- International Energy Agency, I.E.A. (2020), Organisation for Economic Co-operation and Development, Paris, France.
- Jalal, M. (2013), "Influence of class f fly ash and silica nano-micro powder on water permeability and thermal properties of high performance cementitious composites", Sci. Eng. Compos. Mater., 20(1), 41-46, https://doi.org/10.1515/secm-2012-0054.
- Jankovic, K., Stankovic, S., Bojovic, D., Stojanovic, M. and Antic, L. (2016), "The influence of nano-silica and barite aggregate on properties of ultra high performance concrete", Constr. Build. Mater., 126, 147-156. https://doi.org/10.1016/j.conbuildmat.2016.09.026.
- Johari, M.M., Brooks, J., Kabir, S. and Rivard, P. (2011), "Influence of supplementary cementitious materials on engineering properties of high strength concrete", Constr. Build. Mater., 25(5), 2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013.
- Kadik, A., Boutchicha, D., Bali, A. and Cherrak, M. (2020), "Glass powder admixture effect on the dynamic properties of concrete, multi-excitation method", Struct. Eng. Mech., 74(5), 671-678. https://doi.org/10.12989/sem.2020.74.5.671.
- Kadri, E.H. and Duval, R. (2009), "Hydration heat kinetics of concrete with silica fume", Constr. Build. Mater., 23(11), 3388-3392. https://doi.org/10.1016/j.conbuildmat.2009.06.008.
- Karthick, B. and Muthuraj, M. (2021), "Effect of medium coarse aggregate on fracture properties of ultra high strength concrete", Struct. Eng. Mech., 77(1), 103-114. https://doi.org/10.12989/sem.2021.77.1.103.
- Khalaf, M.A., Ban, C.C. and Ramli, M. (2019), "The constituents, properties and application of heavyweight concrete: A review", Constr. Build. Mater., 215, 73-89. https://doi.org/10.1016/j.conbuildmat.2019.04.146.
- Khalaf, M.A., Ban, C.C., Ramli, M., Ahmed, N.M., Sern, L.J. and Khaleel, H.A. (2020), "Physicomechanical and gamma-ray shielding properties of high-strength heavyweight concrete containing steel furnace slag aggregate", J. Build. Eng., 30, 101306. https://doi.org/10.1016/j.jobe.2020.101306.
- Khalaf, M.A., Cheah, C.B., Ramli, M., Ahmed, N.M. and Al-Shwaiter, A. (2021), "Effect of nano zinc oxide and silica on mechanical, fluid transport and radiation attenuation properties of steel furnace slag heavyweight concrete", Constr. Build. Mater., 274, 121785. https://doi.org/10.1016/j.conbuildmat.2020.121785.
- Khan, M.I. and Lynsdale, C. (2002), "Strength, permeability, and carbonation of high-performance concrete", Cement Concrete Res., 32(1), 123-131. https://doi.org/10.1016/S0008-8846(01)00641-X.
- Kounakoff, B.A., Hanzic, L. and Ho, J.C.M. (2017), "Limestone and silica fume to improve concurrent flowability-segregation limits of concrete", Mag. Concrete Res., 69(23), 1189-1202. https://doi.org/10.1680/jmacr.16.00387.
- Kwan, A.K.H. and Wong, H.H.C. (2008), "Packing density of cementitious materials: Part 2-Packing and flow of opc+ pfa+ csf", Mater. Struct., 41(4), 773-784. https://doi.org/10.1617/s11527-007-9281-6.
- Lai, M., Hanzic, L. and Ho, J.C.M. (2019), "Fillers to improve passing ability of concrete", Struct. Concrete, 20(1), 185-197. https://doi.org/10.1002/suco.201800047
- Lai, M.H., Binhowimal, S.A.M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2020), "Cause and mitigation of dilatancy in cement powder paste", Constr. Build. Mater., 236, 117595. https://doi.org/10.1016/j.conbuildmat.2019.117595.
- Lai, M.H., Binhowimal, S.A.M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2020), "Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers", Struct. Concrete, 21(3), 1164-1180. https://doi.org/10.1002/suco.201900320.
- Lai, M.H., Griffith, A. M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2021), "Interdependence of passing ability, dilatancy and wet packing density of concrete", Constr. Build. Mater., 270, 121440. https://doi.org/10.1016/j.conbuildmat.2020.121440.
- Lazaro, A., Quercia, G. and Brouwers, H. (2012), "Production and application of a new type of nano-silica in concrete", Proceedings of the International Conference on Building Materials, Finger-Institut fur Baustoffkunde, Weimar, Germany,
- Lothenbach, B., Scrivener, K. and Hooton, R. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
- Mahdy, M., Speare, P. and Abdel-Reheem, A. (2002), "Shielding properties of heavyweight, high strength concrete", 2nd Material Specialty Conference of the Canadian Society for Civil Engineering, Montreal, Quebec, June.
- Maslehuddin, M., Naqvi, A., Ibrahim, M. and Kalakada, Z. (2013), "Radiation shielding properties of concrete with electric arc furnace slag aggregates and steel shots", Ann. Nucl. Energy, 53, 192-196. https://doi.org/10.1016/j.anucene.2012.09.006.
- Maybury, J., Ho, J.C.M. and Binhowimal, S.A.M. (2017), "Fillers to lessen shear thickening of cement powder paste", Constr. Build. Mater., 142, 268-279. https://doi.org/10.1016/j.conbuildmat.2017.03.076.
- Mazzoli, A., Corinaldesi, V., Donnini, J., Di Perna, C., Micheli, D., Vricella, A., Pastore, R., Bastianelli, L., Moglie, F. and Primiani, V.M. (2018), "Effect of graphene oxide and metallic fibers on the electromagnetic shielding effect of engineered cementitious composites", J. Build. Eng., 18, 33-39. https://doi.org/10.1016/j.jobe.2018.02.019.
- Mesbahi, A. and Ghiasi, H. (2018), "Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations", Appl. Radiat. Isotop., 136, 27-31. https://doi.org/10.1016/j.apradiso.2018.02.004.
- Mostofinejad, D., Reisi, M., Shirani, A.J.C. and Materials, B. (2012), "Mix design effective parameters on γ-ray attenuation coefficient and strength of normal and heavyweight concrete", Constr. Build. Mater., 28(1), 224-229. https://doi.org/10.1016/j.conbuildmat.2011.08.043.
- Nematzadeh, M., Baradaran-Nasiri, A. and Hosseini, M. (2019), "Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire", Struct. Eng. Mech., 72(3), 339-354. https://doi.org/10.12989/sem.2019.72.3.339.
- Nikbin, I.M., Shad, M., Jafarzadeh, G.A. and Dezhampanah, S. (2019), "An experimental investigation on combined effects of nano-wo3 and nano-bi2o3 on the radiation shielding properties of magnetite concretes", Prog. Nucl. Energy, 117, 103103. https://doi.org/10.1016/j.pnucene.2019.103103.
- Norhasri, M.M., Hamidah, M. and Fadzil, A.M. (2017), "Applications of using nano material in concrete: A review", Constr. Build. Mater., 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.
- Ouda, A.S. (2015), "Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding", Prog. Nucl. Energy, 79, 48-55. https://doi.org/10.1016/j.pnucene.2014.11.009.
- Ouda, A.S. and Abdelgader, H.S. (2019), "Assessing the physical, mechanical properties, and γ-ray attenuation of heavy density concrete for radiation shielding purposes", Geosyst. Eng., 22(2), 72-80. https://doi.org/10.1080/12269328.2018.1469434.
- Ozen, S., Sengul, C., Erenoglu, T., Colak, u., Reyhancan, I.A. and Tasdemi̇ r, M.A. (2016), "Properties of heavyweight concrete for structural and radiation shielding purposes", Arab. J. Sci. Eng., 41(4), 1573-1584. https://doi.org/10.1007/s13369-015-1868-6.
- Ozyildirim, C. and Zegetosky, C. (2010), "Exploratory investigation of nanomaterials to improve strength and permeability of concrete", Transp. Res. Record, 2142(1), 1-8. https://doi.org/10.3141/2142-01.
- Ozyildirim, H.C. and Zegetosky, C. (2010), "Laboratory investigation of nanomaterials to improve the permeability and strength of concrete", Report No., Virginia Transportation Research Council,
- Papachristoforou, M. and Papayianni, I. (2018), "Radiation shielding and mechanical properties of steel fiber reinforced concrete (sfrc) produced with eaf slag aggregates", Radiat. Phys. Chem., 149, 26-32. https://doi.org/10.1016/j.radphyschem.2018.03.010.
- Rezaei-Ochbelagh, D., Azimkhani, S. and Mosavinejad, H.G. (2012), "Shielding and strength tests of silica fume concrete", Ann. Nucl. Energy, 45, 150-154. https://doi.org/10.1016/j.anucene.2012.02.006.
- Rezania, M., Panahandeh, M., Razavi, S. and Berto, F. (2019), "Experimental study of the simultaneous effect of nano-silica and nano-carbon black on permeability and mechanical properties of the concrete", Theor. Appl. Fract. Mech., 104, 102391. https://doi.org/10.1016/j.tafmec.2019.102391.
- Saad, M., Agwa, I.S., Abdelsalam Abdelsalam, B. and Amin, M. (2020), "Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers", Mech. Adv. Mater. Struct., 29(4), 564-573. https://doi.org/10.1080/15376494.2020.1780352.
- Said, A.M., Zeidan, M.S., Bassuoni, M. and Tian, Y. (2012), "Properties of concrete incorporating nano-silica", Constr. Build. Mater., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044.
- Sayyed, M.I., Kaky, K.M., Gaikwad, D.K., Agar, O., Gawai, U.P. and Baki, S.O. (2019), "Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (bi2o3/moo3)", J. Non-Crystal. Solid., 507, 30-37. https://doi.org/10.1016/j.jnoncrysol.2018.12.010.
- Sayyed, M.I., Tekin, H.O., Kilicoglu, O., Agar, O. and Zaid, M.H.M. (2018), "Shielding features of concrete types containing sepiolite mineral: Comprehensive study on experimental, xcom and mcnpx results", Result. Phys., 11, 40-45. https://doi.org/10.1016/j.rinp.2018.08.029.
- Shams, T., Eftekhar, M. and Shirani, A. (2018), "Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms", Constr. Build. Mater., 182, 35-42. https://doi.org/10.1016/j.conbuildmat.2018.06.032.
- Sharma, A., Reddy, G., Varshney, L., Bharathkumar, H., Vaze, K., Ghosh, A., Kushwaha, H. and Krishnamoorthy, T. (2009), "Experimental investigations on mechanical and radiation shielding properties of hybrid lead-steel fiber reinforced concrete", Nucl. Eng. Des., 239(7), 1180-1185. https://doi.org/10.1016/j.nucengdes.2009.02.017.
- Sharma, A., Sayyed, M.I., Agar, O., Kacal, M.R., Polat, H. and Akman, F. (2020), "Photon-shielding performance of bismuth oxychloride-filled polyester concretes", Mater. Chem. Phys., 241, 122330. https://doi.org/10.1016/j.matchemphys.2019.122330.
- Sharma, G. and Singh, K. (2019), "Recycling and utilization of agro-food waste ashes: Syntheses of the glasses for wide-band gap semiconductor applications", J. Mater. Cycl. Waste Manage., 21(4), 801-809. https://doi.org/10.1007/s10163-019-00839-z.
- Song, H.W., Pack, S.W., Nam, S.H., Jang, J.C. and Saraswathy, V. (2010), "Estimation of the permeability of silica fume cement concrete", Constr. Build. Mater., 24(3), 315-321. https://doi.org/10.1016/j.conbuildmat.2009.08.033.
- Tekin, H., Sayyed, M. and Issa, S.A. (2018), "Gamma radiation shielding properties of the hematite-serpentine concrete blended with wo3 and bi2o3 micro and nano particles using mcnpx code", Radiat. Phys. Chem., 150, 95-100. https://doi.org/10.1016/j.radphyschem.2018.05.002.
- Tekin, H.O., Sayyed, M.I. and Issa, S.A. (2018), "Gamma radiation shielding properties of the hematite-serpentine concrete blended with wo3 and bi2o3 micro and nano particles using mcnpx code", Rad. Phys. Chem., 150, 95-100. https://doi.org/10.1016/j.radphyschem.2018.05.002.
- Tekin, H.O., Sayyed, M.I., Altunsoy, E.E. and Manici, T. (2017), "Shielding properties and effects of wo3 and pbo on mass attenuation coefficients by using mcnpx code", Dig. J. Nanomater. Biostruct., 12(3), 861-867.
- Tekle, B.H., Cui, Y. and Khennane, A. (2020), "Bond properties of steel and sand-coated gfrp bars in alkali activated cement concrete", Struct. Eng. Mech., 75(1), 123-131. https://doi.org/10.12989/sem.2020.75.1.123.
- Tobbala, D. (2019), "Effect of nano-ferrite addition on mechanical properties and gamma ray attenuation coefficient of steel fiber reinforced heavy weight concrete", Constr. Build. Mater., 207, 48-58. https://doi.org/10.1016/j.conbuildmat.2019.02.099.
- Tufekci, M.M. and Gokce, A. (2018), "Development of heavyweight high performance fiber reinforced cementitious composites (hpfrcc)-part ii: X-ray and gamma radiation shielding properties", Constr. Build. Mater., 163, 326-336. https://doi.org/10.1016/j.conbuildmat.2017.12.086.
- Turkmen, I., Ozdemir, Y., Kurudirek, M., Demir, F., Simsek, O. and Demirboga, R. (2008), "Calculation of radiation attenuation coefficients in portland cements mixed with silica fume, blast furnace slag and natural zeolite", Ann. Nucl. Energy, 35(10), 1937-1943. https://doi.org/10.1016/j.anucene.2008.03.012.
- Verdipoor, K., Alemi, A. and Mesbahi, A. (2018), "Photon mass attenuation coefficients of a silicon resin loaded with wo3, pbo, and bi2o3 micro and nano-particles for radiation shielding", Radiat. Phys. Chem., 147, 85-90. https://doi.org/10.1016/j.radphyschem.2018.02.017.
- Waly, E.S.A. and Bourham, M.A. (2015), "Comparative study of different concrete composition as gamma-ray shielding materials", Ann. Nucl. Energy, 85, 306-310. https://doi.org/10.1016/j.anucene.2015.05.011.
- Wang, H. and Wang, L. (2013), "Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete", Constr. Build. Mater., 38, 1146-1151. https://doi.org/10.1016/j.conbuildmat.2012.09.016.
- Wong, H.H.C. and Kwan, A.K.H. (2008), "Packing density of cementitious materials: Part 1-Measurement using a wet packing method", Mater. Struct., 41(4), 689-701. https://doi.org/10.1617/s11527-007-9274-5.
- Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
- Yao, Y., Zhang, X., Li, M., Yang, R., Jiang, T. and Lv, J. (2016), "Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive", Radiat. Phys. Chem., 127, 188-193. https://doi.org/10.1016/j.radphyschem.2016.06.028.
- Yousefzad Farrokhi, F. and Kazanc, F. (2018), "Combustion behavior and kinetics of turkish lignite blended with biomass/magnesite dust", J. Energy Eng., 144(6), 04018064. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000579.
- Yuan, T.F., Choi, J.S., Kim, S.K. and Yoon, Y.S. (2021), "Assessment of steel slag and steel fiber to control electromagnetic shielding in high-strength concrete", KSCE J. Civil Eng., 25(3), 920-930. https://doi.org/10.1007/s12205-021-0629-1.
- Zaman Khan, Q.U., El Ouni, M.H., Raza, A. and Alomayri, T. (2022), "Mechanical behavior of electronic waste concrete columns reinforced with structural fibers and glass fiber reinforced polymer bars: Experimental and analytical investigation", Adv. Struct. Eng., 25(2), 374-391. https://doi.org/10.1177/13694332211049988.
- Zayed, A.M., Masoud, M.A., Rashad, A.M., El-Khayatt, A.M., Sakr, K., Kansouh, W.A. and Shahien, M.G. (2020), "Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete", Constr. Build. Mater., 260, 120473. https://doi.org/10.1016/j.conbuildmat.2020.120473.
- Zeyad, A.M. (2020), "Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete", J. Mater. Res. Technol., 9(3), 4147-4158. https://doi.org/10.1016/j.jmrt.2020.02.042.
- Zeyad, A.M. and Almalki, A. (2020), "Influence of mixing time and superplasticizer dosage on self-consolidating concrete properties", J. Mater. Res. Technol., 9(3), 6101-6115. https://doi.org/10.1016/j.jmrt.2020.04.013.
- Zeyad, A.M., Hakeem, I.Y., Amin, M., Tayeh, B.A. and Agwa, I.S. (2022), "Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding", J. Build. Eng., 58, 104960. https://doi.org/10.1016/j.jobe.2022.104960.
- Zeyad, A.M., Johari, M.M., Tayeh, B.A. and Yusuf, M.O. (2016), "Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete", Constr. Build. Mater., 125, 1066-1079. https://doi.org/10.1016/j.conbuildmat.2016.08.065.