DOI QR코드

DOI QR Code

Effects of Nonylphenol on the Secretion of Catecholamines and Adrenocortical Hormones from Short-Term Incubated Rat Adrenal Glands

  • Hee-Su Kim (Department of Biotechnology, Sangmyung University) ;
  • Yong-Pil Cheon (Division of Developmental Biology and Physiology, School of Biological Sciences and Chemistry, Sungshin University) ;
  • Sung-Ho Lee (Department of Biotechnology, Sangmyung University)
  • Received : 2023.09.13
  • Accepted : 2023.11.18
  • Published : 2023.12.31

Abstract

Previously, we showed that a chronic-low-dose nonylphenol (NP) exposure resulted in histological changes with sexually dimorphic pattern in rat adrenal glands. We hypothesized that such structural changes are closely related to the hormonal secretory patterns. To test this hypothesis, we developed the short-term adrenal incubation method, and measured the levels of catecholamines and cortical steroids using the high-performance liquid chromatography with electrochemical detection (HPLC-ECD) and specific enzyme-linked immunosorbent assay, respectively. The norepinephrine (NE) levels in media from NP-treated female adrenal, except 100 pM NP, were significantly increased [control (CTL) vs 1 nM NP, p<0.001; vs 10 nM NP, p<0.05; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.01]. The NE secretion from male adrenal was higher when treated with 100 nM and 1 µM NP (CTL vs 100 nM NP, p<0.05; vs 1 µM NP, p<0.05, respectively). The aldosterone level in the female adrenal media treated with 100 pM NP was significantly decreased, on the other hand, that of media treated with 10 nM NP was significantly increased (CTL vs 100 pM NP, p<0.05; vs 10 nM NP, p<0.01). In male adrenal media, the aldosterone levels of 10 nM, 100 nM and 1 µM NP-treated media were significantly declined (CTL vs 10 nM NP, p<0.001; vs 100 nM NP, p<0.001; vs 1 µM NP, p<0.001). These results showed the NP treatment altered secretory pattern of aldosterone from adrenals of both sexes, showing sexual dimorphism. It may be helpful for understanding possible adrenal pathophysiology, and endocrine disrupting chemicals-related sexually dimorphic phenomena in adrenals.

Keywords

References

  1. Ajdzanovic V, Sosic-Jurjevic B, Filipovic B, Trifunovic S, Manojlovic-Stojanoski M, Sekulic M, Milosevic V (2009) Genistein-induced histomorphometric and hormone secreting changes in the adrenal cortex in middle-aged rats. Exp Biol Med 234:148-156. https://doi.org/10.3181/0807-RM-231
  2. Chang LL, Wun WSA, Wang PS (2010) Effects and mechanisms of nonylphenol on corticosterone release in rat zona fasciculata-reticularis cells. Toxicol Sci 118:411-419. https://doi.org/10.1093/toxsci/kfq274
  3. Chang LL, Wun WSA, Wang PS (2012) Effects of nonylphenol on aldosterone release from rat zona glomerulosa cells. Chem Biol Interact 195:11-17. https://doi.org/10.1016/j.cbi.2011.09.004
  4. Chang LL, Wun WSA, Wang PS (2018) An inhibitor of 11-β hydroxysteroid dehydrogenase type 1 (PF915275) alleviates nonylphenol-induced hyperadrenalism and adiposity in rat and human cells. BMC Pharmacol Toxicol 19:45.
  5. Chen H, Liu M, Li Q, Zhou P, Huang J, Zhu Q, Li Z, Ge R (2023) Exposure to dipentyl phthalate in utero disrupts the adrenal cortex function of adult male rats by inhibiting SIRT1/PGC-1α and inducing AMPK phosphorylation. Environ Toxicol 38:997-1010. https://doi.org/10.1002/tox.23743
  6. Czarnywojtek A, Borowska M, Dyrka K, Moskal J, Koscinski J, Krela-Kazmierczak I, Lewandowska AM, Abou Hjeily B, Gut P, Hoffmann K, Van Gool S, Sawicka-Gutaj N, Ruchala M (2023) The influence of various endocrine disruptors on the reproductive system. Endokrynol Pol 74:221-233. https://doi.org/10.5603/EP.a2023.0034
  7. Egalini F, Marinelli L, Rossi M, Motta G, Prencipe N, Giaccherino RR, Pagano L, Grottoli S, Giordano R (2022) Endocrine disrupting chemicals: Effects on pituitary, thyroid and adrenal glands. Endocrine 78:395-405. https://doi.org/10.1007/s12020-022-03076-x
  8. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT (2015) EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36:E1-E150. https://doi.org/10.1210/er.2015-1010
  9. Haeno S, Maeda N, Yamaguchi K, Sato M, Uto A, Yokota H (2015) Adrenal steroidogenesis disruption caused by HDL/cholesterol suppression in diethylstilbestrol-treated adult male rat. Endocrine 52:148-156. https://doi.org/10.1007/s12020-015-0732-5
  10. Harvey PW (2016) Adrenocortical endocrine disruption. J Steroid Biochem Mol Biol 155:199-206. https://doi.org/10.1016/j.jsbmb.2014.10.009
  11. Hinson JP, Raven PW (2006) Effects of endocrine-disrupting chemicals on adrenal function. Best Pract Res Clin Endocrinol Metab 20:111-120. https://doi.org/10.1016/j.beem.2005.09.006
  12. Kabir ER, Rahman MS, Rahman I (2015) A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol 40:241-258. https://doi.org/10.1016/j.etap.2015.06.009
  13. Kim HS, Lee SH (2022) Effect of nonylphenol on the structure of adrenal cortex in F1 generation rats. Dev Reprod 26:175-182. https://doi.org/10.12717/DR.2022.26.4.175
  14. Kim YB, Cheon YP, Choi D, Lee SH (2020) Histological analysis of reproductive system in low-dose nonylphenol-treated F1 female mice. Dev Reprod 24:159-165. https://doi.org/10.12717/DR.2020.24.3.159
  15. Lagunas N, Fernandez-Garcia JM, Blanco N, Ballesta A, Carrillo B, Arevalo MA, Collado P, Pinos H, Grassi D (2022) Organizational effects of estrogens and androgens on estrogen and androgen receptor expression in pituitary and adrenal glands in adult male and female rats. Front Neuroanat 16:902218.
  16. Lan HC, Lin IW, Yang ZJ, Lin JH (2015) Low-dose bisphenol A activates Cyp11a1 gene expression and corticosterone secretion in adrenal gland via the JNK signaling pathway. Toxicol Sci 148:26-34. https://doi.org/10.1093/toxsci/kfv162
  17. Lauretta R, Sansone A, Sansone M, Romanelli F, Appetecchia M (2019) Endocrine disrupting chemicals: Effects on endocrine glands. Front Endocrinol 10:178.
  18. Lee BY, Jo JB, Choi D, Lee SH, Cheon YP (2021) A chronic-low-dose exposing of DEHP with OECD TG 443 altered the histological characteristics and steroidogenic gene expression of adrenal gland in female mice. Dev Reprod 25:257-268. https://doi.org/10.12717/DR.2021.25.4.257
  19. Levasseur A, Dumontet T, Martinez A (2019) Sexual dimorphism in adrenal gland development and tumorigenesis. Curr Opin Endocr Metab Res 8:60-65. https://doi.org/10.1016/j.coemr.2019.07.008
  20. Li X, Li L, Chen X, Li X, Wang Y, Zhu Q, Gao-Smith F, Ge RS (2020) Triphenyltin chloride reduces the development of rat adrenal cortex during puberty. Food Chem Toxicol 143:111479.
  21. Lyraki R, Schedl A (2021) The sexually dimorphic adrenal cortex: Implications for adrenal disease. Int J Mol Sci 22:4889.
  22. Mandon EC, de Gomez Dumm INT, de Alaniz MJT, Marra CA, Brenner RR (1987) ACTH depresses Δ6 and Δ5 desaturation activity in rat adrenal gland and liver. J Lipid Res 28:1377-1383. https://doi.org/10.1016/S0022-2275(20)38570-9
  23. Pihlajoki M, Dorner J, Cochran RS, Heikinheimo M, Wilson DB (2015) Adrenocortical zonation, renewal, and remodeling. Front Endocrinol 6:27.
  24. Trejter M, Jopek K, Celichowski P, Tyczewska M, Malendowicz LK, Rucinski M (2015) Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats. Folia Histochem Cytobiol 53:133-144. https://doi.org/10.5603/FHC.a2015.0012
  25. Wood AT, Hall MR (2000) Reversed-phase high-performance liquid chromatography of catecholamines and indoleamines using a simple gradient solvent system and native fluorescence detection. J Chromatogr B Biomed Sci Appl 744:221-225. https://doi.org/10.1016/S0378-4347(00)00249-8
  26. Yanagihara N, Toyohira Y, Ueno S, Tsutsui M, Utsunomiya K, Liu M, Tanaka K (2005) Stimulation of catecholamine synthesis by environmental estrogenic pollutants. Endocrinology 146:265-272. https://doi.org/10.1210/en.2004-0556