References
- Ajdzanovic V, Sosic-Jurjevic B, Filipovic B, Trifunovic S, Manojlovic-Stojanoski M, Sekulic M, Milosevic V (2009) Genistein-induced histomorphometric and hormone secreting changes in the adrenal cortex in middle-aged rats. Exp Biol Med 234:148-156. https://doi.org/10.3181/0807-RM-231
- Chang LL, Wun WSA, Wang PS (2010) Effects and mechanisms of nonylphenol on corticosterone release in rat zona fasciculata-reticularis cells. Toxicol Sci 118:411-419. https://doi.org/10.1093/toxsci/kfq274
- Chang LL, Wun WSA, Wang PS (2012) Effects of nonylphenol on aldosterone release from rat zona glomerulosa cells. Chem Biol Interact 195:11-17. https://doi.org/10.1016/j.cbi.2011.09.004
- Chang LL, Wun WSA, Wang PS (2018) An inhibitor of 11-β hydroxysteroid dehydrogenase type 1 (PF915275) alleviates nonylphenol-induced hyperadrenalism and adiposity in rat and human cells. BMC Pharmacol Toxicol 19:45.
- Chen H, Liu M, Li Q, Zhou P, Huang J, Zhu Q, Li Z, Ge R (2023) Exposure to dipentyl phthalate in utero disrupts the adrenal cortex function of adult male rats by inhibiting SIRT1/PGC-1α and inducing AMPK phosphorylation. Environ Toxicol 38:997-1010. https://doi.org/10.1002/tox.23743
- Czarnywojtek A, Borowska M, Dyrka K, Moskal J, Koscinski J, Krela-Kazmierczak I, Lewandowska AM, Abou Hjeily B, Gut P, Hoffmann K, Van Gool S, Sawicka-Gutaj N, Ruchala M (2023) The influence of various endocrine disruptors on the reproductive system. Endokrynol Pol 74:221-233. https://doi.org/10.5603/EP.a2023.0034
- Egalini F, Marinelli L, Rossi M, Motta G, Prencipe N, Giaccherino RR, Pagano L, Grottoli S, Giordano R (2022) Endocrine disrupting chemicals: Effects on pituitary, thyroid and adrenal glands. Endocrine 78:395-405. https://doi.org/10.1007/s12020-022-03076-x
- Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT (2015) EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36:E1-E150. https://doi.org/10.1210/er.2015-1010
- Haeno S, Maeda N, Yamaguchi K, Sato M, Uto A, Yokota H (2015) Adrenal steroidogenesis disruption caused by HDL/cholesterol suppression in diethylstilbestrol-treated adult male rat. Endocrine 52:148-156. https://doi.org/10.1007/s12020-015-0732-5
- Harvey PW (2016) Adrenocortical endocrine disruption. J Steroid Biochem Mol Biol 155:199-206. https://doi.org/10.1016/j.jsbmb.2014.10.009
- Hinson JP, Raven PW (2006) Effects of endocrine-disrupting chemicals on adrenal function. Best Pract Res Clin Endocrinol Metab 20:111-120. https://doi.org/10.1016/j.beem.2005.09.006
- Kabir ER, Rahman MS, Rahman I (2015) A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol 40:241-258. https://doi.org/10.1016/j.etap.2015.06.009
- Kim HS, Lee SH (2022) Effect of nonylphenol on the structure of adrenal cortex in F1 generation rats. Dev Reprod 26:175-182. https://doi.org/10.12717/DR.2022.26.4.175
- Kim YB, Cheon YP, Choi D, Lee SH (2020) Histological analysis of reproductive system in low-dose nonylphenol-treated F1 female mice. Dev Reprod 24:159-165. https://doi.org/10.12717/DR.2020.24.3.159
- Lagunas N, Fernandez-Garcia JM, Blanco N, Ballesta A, Carrillo B, Arevalo MA, Collado P, Pinos H, Grassi D (2022) Organizational effects of estrogens and androgens on estrogen and androgen receptor expression in pituitary and adrenal glands in adult male and female rats. Front Neuroanat 16:902218.
- Lan HC, Lin IW, Yang ZJ, Lin JH (2015) Low-dose bisphenol A activates Cyp11a1 gene expression and corticosterone secretion in adrenal gland via the JNK signaling pathway. Toxicol Sci 148:26-34. https://doi.org/10.1093/toxsci/kfv162
- Lauretta R, Sansone A, Sansone M, Romanelli F, Appetecchia M (2019) Endocrine disrupting chemicals: Effects on endocrine glands. Front Endocrinol 10:178.
- Lee BY, Jo JB, Choi D, Lee SH, Cheon YP (2021) A chronic-low-dose exposing of DEHP with OECD TG 443 altered the histological characteristics and steroidogenic gene expression of adrenal gland in female mice. Dev Reprod 25:257-268. https://doi.org/10.12717/DR.2021.25.4.257
- Levasseur A, Dumontet T, Martinez A (2019) Sexual dimorphism in adrenal gland development and tumorigenesis. Curr Opin Endocr Metab Res 8:60-65. https://doi.org/10.1016/j.coemr.2019.07.008
- Li X, Li L, Chen X, Li X, Wang Y, Zhu Q, Gao-Smith F, Ge RS (2020) Triphenyltin chloride reduces the development of rat adrenal cortex during puberty. Food Chem Toxicol 143:111479.
- Lyraki R, Schedl A (2021) The sexually dimorphic adrenal cortex: Implications for adrenal disease. Int J Mol Sci 22:4889.
- Mandon EC, de Gomez Dumm INT, de Alaniz MJT, Marra CA, Brenner RR (1987) ACTH depresses Δ6 and Δ5 desaturation activity in rat adrenal gland and liver. J Lipid Res 28:1377-1383. https://doi.org/10.1016/S0022-2275(20)38570-9
- Pihlajoki M, Dorner J, Cochran RS, Heikinheimo M, Wilson DB (2015) Adrenocortical zonation, renewal, and remodeling. Front Endocrinol 6:27.
- Trejter M, Jopek K, Celichowski P, Tyczewska M, Malendowicz LK, Rucinski M (2015) Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats. Folia Histochem Cytobiol 53:133-144. https://doi.org/10.5603/FHC.a2015.0012
- Wood AT, Hall MR (2000) Reversed-phase high-performance liquid chromatography of catecholamines and indoleamines using a simple gradient solvent system and native fluorescence detection. J Chromatogr B Biomed Sci Appl 744:221-225. https://doi.org/10.1016/S0378-4347(00)00249-8
- Yanagihara N, Toyohira Y, Ueno S, Tsutsui M, Utsunomiya K, Liu M, Tanaka K (2005) Stimulation of catecholamine synthesis by environmental estrogenic pollutants. Endocrinology 146:265-272. https://doi.org/10.1210/en.2004-0556