DOI QR코드

DOI QR Code

Geotechnical problems in flexible pavement structures design

  • Mato G., Uljarevic (Faculty of Architecture, Civil Engineering and Geodesy, University of Banja Luka) ;
  • Snjezana Z., Milovanovic (Faculty of Architecture, Civil Engineering and Geodesy, University of Banja Luka) ;
  • Radovan B., Vukomanovic (Faculty of Architecture, Civil Engineering and Geodesy, University of Banja Luka) ;
  • Dragana D., Zeljic (Faculty of Architecture, Civil Engineering and Geodesy, University of Banja Luka)
  • 투고 : 2021.12.28
  • 심사 : 2022.12.21
  • 발행 : 2023.01.10

초록

Deformability of road pavements in the form of ruts represent a safety risk for road users. In the procedures for dimensioning the pavement structure, the requirement that such deformations do not occur is imperatively included, which results in the appropriate selection of elements (material, geometry) of the pavement structure. Deformability and functionality, will depend of the correct design of pavement structure during exploitation period. Nevertheless, there are many examples where deformations are observed on the pavement structure, in the form of rutting at parts of the road with relatively short length, realised in the same climatic and the same geoenvironmental conditions. The performed analysis of deformability led to the conclusion that the level of deformation is a function of the speed of traffic. This effect is observed on city roads, but also outside of urban areas at roads with speed limits are significant, due to the traffic management, traffic jams (intersections, etc.). Still, the lower speed cause greater deformations. The authors tried to describe the deformability of flexible pavement structures, from the aspects of geotechnical problems, as a function of driving speed. Outcome of the analysis is a traffic load correction coefficient, in terms of using the existing methods of flexible pavement structures design.

키워드

참고문헌

  1. AASHTO (1972), AASHTO Interim Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials; Washington D.C., USA.
  2. Babic, B. (1997), Projektiranje Kolnickih Konstrukcija, Hrvatsko drustvo gradevinskih inzenjera, Zagreb, Hrvatska.
  3. Bi, G., Ni, S., Wang, D., Chen, Y., Wei, J. and Gong, W. (2019), "Creep in primary consolidation with rate of loading approach", Scientific Reports, 9:8992. https://doi.org/10.1038/s41598-019-45498-0
  4. Boler, H., Mishra, D., Hou, W. and Tutumluer, E. (2018), "Understanding track substructure behavior: Field instrumentation data analysis and development of numerical models", Civil Engineering Faculty Publications and Presentation, Department of Civil Engineering.
  5. Burmister, D.M. (1943), "The theory of stresses and displacements in layered systems and applications to the design of airport runways", Proceedings of the 23rd Annual Meeting of the Highway Research Board, Chicago, Illinois, USA, November.
  6. Burmister, D.M. (1945), "The general theory of stresses and displacements in layered soil systems", J. Appl. Phys., 16(5). https://doi.org/10.1063/1.1707558.
  7. Chiaradonna A., d'Onofrio, A. and Bilotta, E. (2019), "Assesment of post-liquefaction consolidation settlement", Bull. Earthq. Eng.. https://doi.org/10.1007/s10518-019-00695-0.
  8. Chou, Y.T. and Larew, H.G. (1969), "Stresses and displacements in viscoelastic pavement systems under a moving load", Highway Research Record, 282, 25-40.
  9. Cvetanovic, A. and Banic, B. (2007), Kolovozne Konstrukcije, Akademska misao, Beograd, Srbija.
  10. De Beer, M., Maina, J.W., van Rensburg, Y. and Greben, J.M. (2012), "Toward using tire-road contact stresses in pavement design and analysis", Tire Sci. Technol., 40(4), 246-271. https://doi.org/10.2346/tire.12.400403.
  11. Elliot, J.F and Moavenzadeh, F. (1971), "Analysis of stresses and displacements in three-layer viscoelastic systems", Highway Research Record, 345, 45-57.
  12. Gomes Correla, A. and Ramos, A. (2021), "A geomechanics classification for the rating of railroad subgrade performance", Railway Eng. Sci., https://doi.org/10.1007/s40534-021-00260-z
  13. Hamed, M., Canakci, H. and Georgees, R.N. (2021), "Experimental investigation on the primary and secondary consolidation behaviours of organic soilunder different water contents", Arabian J. Geosci., 14:2865. https://doi.org/10.1007/s12517-021-09231-4.
  14. Hong, Z.S., Zeng, L.L., Cui, Y.J., Cai, Y.Q. and Lin, C. (2012), "Compression behaviour of natural and reconstituted clays", Geotechnique, 62(4), 291-301. http://dx.doi.org/10.1680/geot.10.P.046.
  15. Huang, J., Xie, X., Zhang, J., Li, J. and Wang, W. (2014), "Nonlinear finite strain consolidation analysis with secondary consolidation behaviour", Math. Problem. Eng., https://doi.org/10.1155/2014/979380.
  16. Huang, Y.H. (1967), "Stresses and displacements in viscoelastic layered systems under circular loaded areas", Proceedings of the 2nd International Conference on the Structural Design of Asphalt Pavements, Ann Arbor, MI, USA, August.
  17. Huang, Y.H. (1968a), "Stresses and displacements in nonlinear soil media", J. Soil Mech. Found. Division, 94, 1-19. https://doi.org/10.1061/JSFEAQ.0001079.
  18. Huang, Y.H. (1973b), "Stresses and strains in viscoelastic multilayer systems subjected to moving loads", Highway Research Record, 457, 60-71.
  19. Huang, Y.H. (1993), Pavement Analysis and Design, Prentice Hall, Upper Saddle River, NJ, USA.
  20. Huhtala, M., Pihlajamaki, J. and Pienimaki, M. (1989), "Effects of tires and tire pressures on road pavements", T. Res. Record, 1227, 107-114.
  21. Jiang, N., Wang, C., Wu, Q. and Li, S. (2020), "Influence of structure and liquid limit on the secondary compressibility of soft soils", J. Mar. Sci. Eng., 627(8), 195-208. https://doi.org/10.3390/jmse8090627.
  22. Jozefiak, K. and Zbiciak, A. (2017), "Secondary consolidation modelling by using rheological schemes", MATEC Web of Conferences, 117. https://doi.org/10.1051/matecconf/20171170006.
  23. Kapustin, V., Khaustov, V. and Kapustin, V.K. (2017), "Researches of soilses secondary consolidation", iipp, 451, 339-344. https://doi.org/10.5937/jaes15-14652.
  24. Kim, M., Tutumluer, E. and Kwon, J. (2009), "Nonlinear pavement foundation modeling for three-dimensional finite-element analysis of flexible pavements", Int. J. Geomech., (9), 195-208. https://doi.org/10.1061/ASCE1532-364120099:5195.
  25. Le, T.M., Fatahi, B., Disfani, M. and Khabbaz, H. (2015), "Analyzing consolidation data to obtain elastic viscoplastic parameters of clay", Geomech. Eng., 4(8), 559-594. https://doi.org/10.12989/gae.2015.8.4.559.
  26. Liu, F., Qin, K. and Han, Y. (2020), "Simplified method for consolidation settlement calculation of combined composite foundation", Shock Vib., 2020. https://doi.org/10.1155/2020/8818161
  27. Mesri, G. and Godlewski, P.M. (1977), "Time and stress-compressibility interrelationship", J. Geotech. Eng. Division, 103(5), 417-430. https://doi.org/10.1061/AJGEB6.0000421.
  28. Nhan, T.T., Nhat, P.C., Huong, H.T.S., Thach, T.X., Thien, D.Q. and Nhan, N.T.T. (2019), "Time to the end of primary consolidation (EOP) of soft clayey soils: concerning the effect of Atterberg's limit and cyclic loading history", Hue University J. Sci. Techniques and Technology, 2(128), 29-41. https://doi.org/10.26459/hueuni-jtt.v128i2A.5424.
  29. Pascale, P., Dore, G. and Prophete, F. (2011), "Characterization of tire impact on the pavement behaviour", Can. J. Civil Eng., 31(5), 860-869. https://cdnsciencepub.com/doi/10.1139/l04-038.
  30. Perloff, W.H. and Moavenzadeh, F. (1967), "Deflection of viscoelastic medium due to moving loads", Proceedings of the 2nd International Conference on the Structural Design of Asphalt Pavements, Ann Arbor, MI, USA, January.
  31. Rashidi, M., Azadeh, S., Fatehirad, P., Emadi, S.M. and LotfiAski, A. (2013), "Prediction of bias-ply tire deflection based on contact area index, inflation pressure and vertical load using linear regression model", World Appl. Sci. J., 22(7), 911-918. https://doi.org/10.5829/idosi.wasj.2013.22.07.2997.
  32. Schulz-Poblete, M.V., Johannes Grabe, P. and Wilem Jacobsz, S. (2018), "The influence of soil suctions on the deformation characteristics of railway formation materials", Transportation Geotechnics. https://doi.org/10.1016/j.trgeo.2018.11.006.
  33. Shayesteh, A., Ghasemisalehabadi, E., Khordehbinan, M.W. and Rostami, T. (2017), "Finite element method in statistical analysis of flexible pavement", J. Mar. Sci. Technol., 25(2), 142-152. https://doi.org/10.6119/JMST-016-0721-1.
  34. Suneel, M., Konni, G.R., Chul, I.J. and Dung, N.T. (2017), "Secondary compression index equation for soft clays", Geotech. Geol. Eng., https://doi.org/10.1007/s10706-017-0358-x.
  35. Takeda, T., Sugiyama, M., Akaishi, M. and Chang, H.W. (2012), "Secondary compression behaviour in one-dimensional consolidation test", J. Geoeng., 2(7), 53-58.
  36. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice - 3rd Ed., John Wiley & Sons, Inc., New York, NY, USA.
  37. Tewatia, S.K. (2012), "Trend of settlement in primary and secondary consolidations", Geomech. Geoeng. Int. J., 1-10. https://doi.org/10.1080/17486025.2012.698023.
  38. Ullidtz, P. (1997), "Modelling flexible pavement response and performance - instructor notes on nondestructive pavement analysis for Pre-Conference Technical Series", Proceedings of the 8th International Conference on Asphalt Pavements, Seattle, WA, USA, August.
  39. Yu, J.Q. and Wu, X.W. (2013), "Analysis of the primary consolidation settlement considering of the settlement load", Appl. Mech. Mater., 353-356, 1063-1066. https://doi.org/10.4028/www.scientific.net/AMM.353-356.1063.