Acknowledgement
The research work herein was supported by the National Natural Science Foundation of China (No.52178337), the China Scholarship Council Project (Grant N0.202108320283), and the National First-class Disciplines.
References
- Casini, F., Gens, A., Olivella, S. and Viggiani, M.B.G. (2016), "Artificial ground freezing of a volcanic ash: laboratory tests and modeling", Environ. Geotech., 3(3), 141-154. https://doi.org/10.1680/envgeo.14.00004.
- Chen, C. and Yang, P. (2021), "Study on the prevention and control for shield tail leakage of large-diameter river-crossing tunnel at high hydraulic pressure", J. For. Eng., 6(1), 155-162. (in Chinese).
- Chen, R.P., Lin, X.T., Kang, X., Zhong, Z.Q., Liu, Y., Zhang, P. and Wu, H.N. (2018), "Deformation and stress characteristics of existing twin tunnels induced by close-distance EPBS under-crossing", Tunn. Undergr. Sp. Tech., 82, 468-481. https://doi.org/10.1016/j.tust.2018.08.059.
- Cui, Y.L. (2003), Well Construction Engineering Manual, Coal Industry Press, Beijing, China.
- Fan, W.H. and Yang, P. (2019), "Ground temperature characteristics during artificial freezing around a subway cross passage", Trans. Geotech., 20, 100250. https://doi.org/10.1016/j.trgeo.2019.100250.
- Fu, Y., Hu, J. and Wu, Y.W. (2021), "Finite element study on temperature field of subway connection aisle construction via artificial ground freezing method", Cold Reg. Sci. Technol., 189, 103327. https://doi.org/10.1016/j.coldregions.2021.103327.
- Hu, Y., Lei, H.Y., Zheng, G., Shi, L., Zhang, T.Q., Shen, Z.C. and Jia. R. (2021), "Assessing the deformation response of double-track overlapped tunnels using numerical simulation and field monitoring", J. Rock Mec. Geotech. Eng., 14(2), 436-447. https://doi.org/10.1016/j.jrmge.2021.07.003.
- Huang, X.W., Yao, Z.S., Cai, H.B., Li, X.W. and Chen, H.Q. (2021), "Performance evaluation of coaxial borehole heat exchangers considering ground non-uniformity based on analytical solutions", Int. J. Therm. Sci., 170, 107162. https://doi.org/10.1016/j.ijthermalsci.2021.107162.
- Huang, S.B., Guo, Y.L., Liu, Y.Z., Ke, L.H., Liu, G.F. and Cheng, C. (2018), "Study on the influence of water flow on temperature around freeze pipes and its distribution optimization during artificial ground freezing", App. Therm. Eng., 135(1), 435-445. https://doi.org/10.1016/j.applthermaleng.2018.02.090.
- Jin, H., Go, G.H., Ryu, B.H. and Lee, J. (2021), "Experimental and numerical investigation of closure time artificial ground freezing with vertical flow", Geomech. Eng., 27(5), 433-445. https://org/10.12989/gae.2021.27.5.433.
- Lackner, R., Amon, A. and Lagger, H. (2005), "Artificial ground freezing of fully saturated soil: thermal problem", J. Eng. Mec., 131(2), 211-220. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(211).
- Levin, L., Golovatyi, I., Zaitsev, A., Pugin, A. and Semin, M. (2021), "Thermal monitoring of frozen wall thawing after artificial ground freezing: Case study of Petrikov Potash Mine", Tunn. Undergr. Sp. Tech., 107, 103685. https://doi.org/10.1016/j.tust.2020.103685.
- Li, K.Q., Li, D.Q. and Liu, Y. (2020), "Meso-scale investigations on the effective thermal conductivity of multi-phase materials using the finite element method", Int. J. Heat Mass. Transf., 151, 119383. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119383.
- Li, K.Q., Miao, Z., Li, D.Q. and Liu, Y. (2022), "Effect of mesoscale internal structure on effective thermal conductivity of anisotropic geomaterials", Acta Geotech., 17(8), 3553-3566. https://doi.org/10.1007/s11440-022-01458-z.
- Liu, J.G., Maa, B.S. and Cheng, Y. (2018), "Design of the Gongbei tunnel using a very large cross-section pipe-roof and soil freezing method", Tunn. Undergr. Sp. Tech., 72, 28-40. https://doi.org/10.1016/j.tust.2017.11.012.
- Liu, J.W., Zhang, Y.X., Yuan, M.Q., Zhao, Y.D. and Yang, J.S. (2022), "Determining the cause of tunnel damages during tunneling in silty clay", Eng. Fail. Anal., 137, 106156. https://doi.org/10.1016/j.engfailanal.2022.106156.
- Marwan, A., Zhou, M.M., Abdelrehim, M.Z. and Meschke, G. (2016), "Optimization of artificial ground freezing in tunneling in the presence of seepage flow", Comput. Geotech., 75, 112-125. https://doi.org/10.1016/j.compgeo.2016.01.004.
- Pimentel, E., Papakonstantinou, S. and Anagnostou, G. (2012), "Numerical interpretation of temperature distributions from three ground freezing applications in urban tunneling", Tunn. Undergr. Sp. Tech., 28, 57-69. https://doi.org/10.1016/j.tust.2011.09.005.
- Qi, W.Q., Yang, Z.Y., Jiang, Y.S., Yang, X., Shao, X.K. and An, H.B. (2022), "Investigation on ground displacements induced by excavation of overlapping twin shield tunnels", Geomech. Eng., 28(5), 531-546. https://doi.org/10.12989/gae.2022.28.5.531.
- Russo, G., Corbo, A., Cavuoto, F. and Autuori, S. (2015), "Artificial ground freezing to excavate a tunnel in sandy soil. Measurements and back analysis", Tunn. Undergr. Sp. Tech., 50, 226-238. https://doi.org/10.1016/j.tust. 2015.07.008.
- Shi, Y.F., Fu, J.Y., Yang, J.S., Xu, C.J. and Geng, D.G. (2017), "Performance evaluation of long pipe roof for tunneling below existing highway based on field tests and numerical analysis: case study", Int. J. Géoméch., 17(9), 04017054. https://doi.org/10.1061/(ASCE)GM. 1943-5622.0000933.
- Tonon, F. (2011), "ADECO full-face tunnel excavation of two 260 m2 tubes in clays with sub-horizontal jet-grouting under minimal urban cover", Tunn. Undergr. Sp. Tech., 26(2), 253-266. https://doi.org/10.1016/j.tust.2010.09.006.
- Tounsi, H., Rouabhi, A. and Jahangir, E. (2020), "Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid", Comput. Geotech., 119, 103382. https://doi.org/10.1016/j.compgeo.2019.103382.
- Vasilyeva, M., Stepanov, S., Spiridonov, D. and Vasil'ev, V. (2019), "Multiscale finite element method for heat transfer problem during artificial ground freezing", J. Comput. Appl. Math., 371, 112665. https://doi.org/10.1016/j.cam.2019.112605.
- Vitel, M., Rouabhi, A. and Tijani, M. (2015), "Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities", Comput. Geotech., 63, 99-111. https://doi.org/10.1016/j.compgeo.2014.08. 004.
- Wang, C., Han, J.T., Kim, S.K. and Jang, Y.E. (2021), "A novel preloading method for foundation underpinning for the remodeling of an existing building", Geomech. Eng., 24(1), 29-42. https://doi.org/10.12989/gae.2021.24.1.029.
- Yan, L., Wang, G., Chen, M., Yue, K.F. and Li, Q.N. (2018), "Experimental and application study on underpinning engineering of bridge pile foundation", Adv. Civ. Eng., 2018, 1-13. https://doi.org/10.1155/2018/5758325.
- Yang, P., Zhao, J.L. and Li, L. (2021), "An artificial freezing technique to facilitate shield tail brush replacement under high pore-water pressure using liquid nitrogen", KSCE J. Civ. Eng., 25(4), 1504-1514. https://doi.org/10.1007/s12205-021-0936-6.
- Zhang, P., Liu, Y., Kang, X., Zhong, K. and Chen, R.P. (2018), "Application of horizontal MJS piles in tunneling beneath existing twin tunnels", Proceedings of the 2nd International Symposium on Asia Urban GeoEngineering. Springer Singapore. Singapore.
- Zhao, J.L., Yang, P. and Li, L. (2020), "Investigating influence of metro jet system hydration heat on artificial ground freezing using numerical analysis", KSCE J. Civ. Eng., 25(2), 724-734. https://doi.org/10.1007/s12205-020-5407-y.
- Zhou, J., Zhao, W.Q. and Tang, Y.Q. (2021), "Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment", Tunn. Undergr. Sp. Tech., 107, 103647. https://doi.org/10.1016/j.tust.2020.103647.