DOI QR코드

DOI QR Code

Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement

  • Yi, Han (School of Architecture, Anhui Science and Technology University) ;
  • Xingliang, Jiang (CCCC Water Transportation Consultants Co., Ltd.) ;
  • Ye, Wang (School of Architecture, Anhui Science and Technology University) ;
  • Hui, Wang (Department of Civil Engineering, Tongji University)
  • Received : 2022.10.13
  • Accepted : 2023.01.13
  • Published : 2023.02.10

Abstract

Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.

Keywords

Acknowledgement

Survey of industrial land and establishment of database in Shengli East Road Area in Bengbu City of Anhui Province (880635); Domestic Visiting Project (gxgnfx2022042); Outstanding young and middle-aged backbone teachers project of college-level (210036); General Natural Science Project of College-level (2021zryb12).

References

  1. Aghayari Hir, M., Zaheri, M. andRahimzadeh, N. (2022), "Prediction of rural travel demand by spatial regression and artificial neural network methods (Tabriz County)", J. Transport.Res., https://doi.org/10.22034/TRI.2022.312204.2970.
  2. Al-Musawi, A.A., Alwanas, A.A.H., Salih, S.Q., Ali, Z.H., Tran, M.T. and Yaseen, Z.M. (2020), "Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model", Eng. with Comput., 36(1), 1-11. https://doi.org/10.1007/s00366-018-0681-8.
  3. Alwanas, A.A.H., Al-Musawi, A.A., Salih, S.Q., Tao, H., Ali, M., and Yaseen, Z.M. (2019), "Load-carrying capacity and mode failure simulation of beam-column joint connection: Application of self-tuning machine learning model", Eng. Struct., 194, 220-229. https://doi.org/10.1016/j.engstruct.2019.05.048.
  4. Alzabeebee, S., Jamei, M., Hasanipanah, M., Amnieh, H.B., Karbasi, M. and Keawsawasvong, S. (2022), "Development of a new explicit soft computing model to predict the blast-induced ground vibration", Geomech. Eng., 30(6), 551-564. https://doi.org/10.12989/gae.2022.30.6.551.
  5. Archer, K.J. and Kimes, R.V. (2008), "Empirical characterization of random forest variable importance measures", Comput. Stat. Data An., 52(4), 2249-2260. https://doi.org/10.1016/j.csda.2007.08.015.
  6. Armaghani, D.J., Faradonbeh, R.S., Rezaei, H., Rashid, A.S.A., and Amnieh, H.B. (2018), "Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming", Neural Comput. Appl., 29(11), 1115-1125. https://doi.org/10.1007/s00521-016-2618-8.
  7. Ashrafian, A., Shokri, F., Amiri, M.J.T., Yaseen, Z.M. and Rezaie-Balf, M. (2020), "Compressive strength of foamed cellular lightweight concrete simulation: New development of hybrid artificial intelligence model", Constr. Build. Mater., 230, 117048. https://doi.org/10.1016/j.conbuildmat.2019.117048.
  8. Babu, G.L.S. and Srivastava, A. (2007), "Reliability analysis of allowable pressure on shallow foundation using response surface method", Comput. Geotech., 34(3), 187-194. https://doi.org/10.1016/j.compgeo.2006.11.002.
  9. Behar, O., Khellaf, A. and Mohammedi, K. (2015), "Comparison of solar radiation models and their validation under Algerian climate-The case of direct irradiance", Energ. Convers. Management, 98, 236-251. https://doi.org/10.1016/j.enconman.2015.03.067.
  10. Benemaran, R.S. and Esmaeili-Falak, M. (2020a), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.309.
  11. Breiman, L. (2001), "Random forests", Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
  12. Bungenstab, F.C. and Bicalho, K.V. (2016), "Settlement predictions of footings on sands using probabilistic analysis", J. Rock Mech. Geotech. Eng. 8(2), 198-203. https://doi.org/10.1016/j.jrmge.2015.08.009.
  13. Chen, H., Wu, L., Chen, J., Lu, W. and Ding, J. (2022), "A comparative study of automated legal text classification using random forests and deep learning", Inform. Process. Management, 59(2), 102798. https://doi.org/10.1016/j.ipm.2021.102798.
  14. Chen, R.P., Zhang, P., Kang, X., Zhong, Z.Q., Liu, Y. and Wu, H.-N. (2019), "Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods", Soils Found., 59(2), 284-295. https://doi.org/10.1016/j.sandf.2018.11.005.
  15. Chen, X.L., Fu, J.P., Yao, J.L. and Gan, J.F. (2018), "Prediction of shear strength for squat RC walls using a hybrid ANN-PSO model", Eng. with Comput., 34(2), 367-383. https://doi.org/10.1007/s00366-017-0547-5.
  16. Cherubini, C. (2000), "Reliability evaluation of shallow foundation bearing capacity on c'φ'soils", Can. Geotech. J., 37(1), 264-269. https://doi.org/10.1139/t99-096
  17. Consoli, N.C., Schnaid, F. and Milititsky, J. (1998), "Interpretation of plate load tests on residual soil site", J. Geotech. Geoenviron. Eng., 124(9), 857-867. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(857).
  18. Dehghani, R., Babaali, H. and Zeydalinejad, N. (2022), "Evaluation of statistical models and modern hybrid artificial intelligence in the simulation of precipitation runoff process", Sustain. Water Resour. Management, 8(5), 1-19. https://doi.org/10.1007/s40899-022-00743-9.
  19. Dehghani, R., Torabi Poudeh, H. and Izadi, Z. (2022), "Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques", Model. Earth Syst. Environ., 8(2), 2599-2613. https://doi.org/10.1007/s40808-021-01253-x
  20. Duncan, J.M. (2000), "Factors of safety and reliability in geotechnical engineering", J. Geotech. Eng., 126(4), 307-316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)
  21. Easa, S.M. (1992), "Exact probabilistic solution of two-parameter bearing capacity for shallow foundations", Can. Geotech. J., 29(5), 867-870. https://doi.org/10.1139/t92-094.
  22. Esmaeili-Choobar, N., Esmaeili-Falak, M., Roohi-hir, M. and Keshtzad, S. (2013), "Evaluation of collapsibility potential at Talesh", Iran. EJGE, 18, 2561-2573.
  23. Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soilsA case study of tabriz subway", Periodica Polytechnica Civil Eng., 62(1), 117-125. https://doi.org/10.3311/PPci.10960.
  24. Esmaeili Falak, M. and Sarkhani Benemaran, R. (2022), "Investigating the stress-strain behavior of frozen clay using triaxial test", J. Struct. Constr. Eng., HTTPS://DOI.ORG/10.22065/JSCE.2022.332406.2747.
  25. Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
  26. Farrar, D.E. and Glauber, R.R. (1967), "Multicollinearity in regression analysis: the problem revisited", The Review of Economic and Statistics, 92-107. https://doi.org/10.2307/1937887.
  27. Fattah, M.Y., Shlash, K.T. and Salim, N.M. (2013), "Prediction of settlement trough induced by tunneling in cohesive ground", Acta Geotechnica, 8(2), 167-179. https://doi.org/10.1007/s11440-012-0169-4.
  28. Ge, D.M., Zhao, L.C. and Esmaeili-Falak, M. (2022), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sust. Cement-Based Mater., 1-19. https://doi.org/10.1080/21650373.2022.2093291.
  29. Ghosh, P., Neufeld, A. and Sahoo, J.K. (2022), "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests", Finance Res. Lett., 46, 102280. https://doi.org/10.1016/j.frl.2021.102280.
  30. Gueymard, C.A. (2014), "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects", Renew. Sust. Energ. Rev., 39, 1024-1034. https://doi.org/10.1016/j.rser.2014.07.117.
  31. Hasanipanah, M., Noorian-Bidgoli, M., Jahed Armaghani, D. and Khamesi, H. (2016), "Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling", Eng. with Comput., 32(4), 705-715. https://doi.org/10.1007/s00366-016-0447-0.
  32. Hayyolalam, V. and Kazem, A.A.P. (2020), "Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems", Eng. Appl. Artif. Intell., 87, 103249. https://doi.org/10.1016/j.engappai.2019.103249.
  33. Islam, M.M., Nagrial, M., Rizk, J. and Hellany, A. (2021), "Solar radiation and wind speed forecasting using deep learning technique", Proceedings of the 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), 1-6. https://doi.org/10.1109/CSDE53843.2021.9718372.
  34. Jebur, A.A., Atherton, W. and Al Khaddar, R. M. (2018), "Feasibility of an evolutionary artificial intelligence (AI) scheme for modelling of load settlement response of concrete piles embedded in cohesionless soil", Ships Offshore Struct., 13(7), 705-718. https://doi.org/10.1080/17445302.2018.1447746.
  35. Kamran, M., Shahani, N.M. and Armaghani, D.J. (2022), "Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches", Geomech. Eng., 30(2), 107-121. 10.12989/gae.2022.30.2.107
  36. Kar, A.K. (2016), "Bio inspired computing-a review of algorithms and scope of applications", Exp. Syst. Appl., 59, 20-32. https://doi.org/10.1016/j.eswa.2016.04.018.
  37. Karimi, I. (2003), "Application of Neuro-Fuzzy systems in estimating the response of sediment-filled valleys", Proceedings of the 10th International Fuzzy Systems Association (IFSA) Congress.
  38. Kidega, R., Ondiaka, M.N., Maina, D., Jonah, K.A.T. and Kamran, M. (2022), "Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms", Geomech. Eng., 30(3), 259-272. https://doi.org/10.12989/gae.2022.30.3.259.
  39. Krizek, R.J., Corotis, R.B. and El-Moursi, H.H. (1978), "Probabilistic analysis of predicted and measured settlements: Can Geotech J, V14, N1, Feb 1977, P17-33", Int. J. Rock Mech. Min. Sci. Geomech. Abstracts, 15(2), 28. https://doi.org/10.1139/t77-002
  40. Lehane, B. and Cosgrove, E. (2000), "Applying triaxial compression stiffness data to settlement prediction of shallow foundations on cohesionless soil", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 143(4), 191-200. https://doi.org/10.1680/geng.2000.143.4.191.
  41. Liaw, A. and Wiener, M. (2002), "Classification and regression by randomForest", R News, 2(3), 18-22.
  42. Luo, J., Wu, C., Liu, X., Mi, D., Zeng, F. and Zeng, Y. (2018), "Prediction of soft soil foundation settlement in Guangxi granite area based on fuzzy neural network model", Proceedings of the IOP Conference Series: Earth and Environmental Science, 108(3), 32034.
  43. Mahmoodzadeh, A., Nejati, H.R., Mohammadi, M., Ibrahim, H. H., Rashidi, S. and Mohammed, A.H. (2022), "Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines", Geomech. Eng., 30(6), 486-502. https://doi.org/10.12989/gae.2022.30.6.489.
  44. Maugeri, M., Castelli, F., Massimino, M.R. and Verona, G. (1998), "Observed and computed settlements of two shallow foundations on sand", J. Geotech. Geoenviron. Eng., 124(7), 595-605. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(595)
  45. Mayne, P.W. (2007), "In-situ test calibrations for evaluating soil parameters", Characterization and Engineering Properties of Natural Soils, Vol. 3. Taylor and Francis Group, London.
  46. Memar, S., Mahdavi-Meymand, A. and Sulisz, W. (2021), "Prediction of seasonal maximum wave height for unevenly spaced time series by Black Widow Optimization algorithm", Mar. Struct., 78, 103005. https://doi.org/10.1016/j.marstruc.2021.103005.
  47. Mirzaeiabdolyousefi, M., Mahmoodzadeh, A., Ibrahim, H.H., Rashidi, S., Majeed, M.K. and Mohammed, A.H. (2022), "Prediction of squeezing phenomenon in tunneling projects: Application of Gaussian process regression", Geomech. Eng., 30(1), 11-26. https://doi.org/10.12989/gae.2022.30.1.011.
  48. Mirzania, E., Kashani, M.H., Golmohammadi, G., Ibrahim, O.R. and Saroughi, M. (2022), Hybrid COOT-ANN: a novel optimization algorithm for prediction of daily reference evapotranspiration in Australia.
  49. Moayedi, H. and Jahed Armaghani, D. (2018), "Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil", Eng. with Comput., 34(2), 347--356. https://doi.org/10.1007/s00366-017-0545-7.
  50. Mohammed, M., Sharafati, A., Al-Ansari, N. and Yaseen, Z.M. (2020), "Shallow foundation settlement quantification: application of hybridized adaptive neuro-fuzzy inference system model", Adv. Civil Eng., 2020. https://doi.org/10.1155/2020/7381617.
  51. Naderpour, H., Mirrashid, M. and Nagai, K. (2020), "An innovative approach for bond strength modeling in FRP strip-to-concrete joints using adaptive neuro-fuzzy inference system", Eng. with Comput., 36(3), 1083-1100. https://doi.org/10.1007/s00366-019-00751-y.
  52. Naderpour, H., Nagai, K., Haji, M. and Mirrashid, M. (2019), "Adaptive neuro-fuzzy inference modelling and sensitivity analysis for capacity estimation of fiber reinforced polymer-strengthened circular reinforced concrete columns", Exp. Syst., 36(4), e12410. https://doi.org/10.1111/exsy.12410.
  53. Naruei, I. and Keynia, F. (2021), "A new optimization method based on COOT bird natural life model", Exp. Syst. Appl., 183, 115352. https://doi.org/10.1016/j.eswa.2021.115352.
  54. Nhu, V.H., Hoang, N.D., Duong, V.B., Vu, H.D. and Bui, D.T. (2020), "A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project, Hai Phong city (Vietnam)", Eng. with Comput., 36(2), 603-616. https://doi.org/10.1007/s00366-019-00718-z.
  55. Peschl, G.M., Schweiger, H., Pottler, R. and Thurner, R. (2002), "Reliability analysis in geotechnics with deterministic finite elements-a simplified approach for practical application in tunnelling", Proceedings of the International Conference on Probabilistics in Geotechnics-Technical and Economic Risk Estimation, 121-128.
  56. Pham, B.T., Nguyen, M.D., Bui, K.T.T., Prakash, I., Chapi, K. and Bui, D.T. (2019), "A novel artificial intelligence approach based on multi-layer perceptron neural network and biogeography-based optimization for predicting coefficient of consolidation of soil", Catena, 173, 302-311. https://doi.org/10.1016/j.catena.2018.10.004.
  57. Phoon, K.K. (2002), "Potential application of reliability-based design to geotechnical engineering", Proceedings of the 4th Colombian Geotechnical Seminar, 1-24.
  58. Qi, C., Chen, Q., Fourie, A. and Zhang, Q. (2018), "An intelligent modelling framework for mechanical properties of cemented paste backfill", Min. Eng., 123, 16-27. https://doi.org/10.1016/j.mineng.2018.04.010.
  59. Robertson, P.K. and Cabal, K.L. (2014), "Guide to cone penetration testing for geotechnical engineering", California: Gregg Drilling and Testing. Inc.
  60. Samui, P. (2008), "Support vector machine applied to settlement of shallow foundations on cohesionless soils", Comput. Geotech., 35(3), 419-427. https://doi.org/10.1016/j.compgeo.2007.06.014.
  61. Samui, P. and Sitharam, T.G. (2008), "Least-square support vector machine applied to settlement of shallow foundations on cohesionless soils", Int. J.Numer. Anal. Method. Geomech., 32(17), 2033-2043. https://doi.org/10.1002/nag.731.
  62. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models", Int. J. Pavement Eng., 1-20. https://doi.org/10.1080/10298436.2022.2095385.
  63. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1-16. https://doi.org/https://doi.org/10.1680/jgeen.20.00152.
  64. Schmertmann, J.H. (1970), "Static cone to compute static settlement over sand", J. Soil Mech. Found. Div., 96(3), 1011-1043. https://doi.org/10.1061/JSFEAQ.0001418.
  65. Scornet, E., Biau, G. and Vert, J.P. (2015), "Consistency of random forests", The Annals of Statistics, 43(4), 1716-1741. https://doi.org/10.1214/15-AOS1321
  66. Shahin, M.A., Maier, H.R. and Jaksa, M.B. (2003a), "Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models", Comput. Geotech., 30(8), 637-647. https://doi.org/10.1016/j.compgeo.2003.09.004.
  67. Shahin, M.A., Maier, H.R. and Jaksa, M.B. (2003b), "Neural and neurofuzzy techniques applied to modelling settlement of shallow foundations on granular soils", Proceedings of the Int. Congress on Modeling and Simulation, MODSIM2003, 4, 1886-1891.
  68. Shahin, Mohamed A, Jaksa, M.B. and Maier, H.R. (2001), "Artificial neural network applications in geotechnical engineering", Australian Geomech., 36(1), 49-62.
  69. Shahin, Mohamed Amin (2003), "Use of artificial neural networks for predicting settlement of shallow foundations on cohesionless soils/Mohamed A. Shahin".
  70. Sharafati, A., Haghbin, M., Motta, D. and Yaseen, Z.M. (2021), "The application of soft computing models and empirical formulations for hydraulic structure scouring depth simulation: a comprehensive review, assessment and possible future research direction", Arch. Comput. Method. Eng., 28(2), 423-447. https://doi.org/10.1007/s11831-019-09382-4.
  71. Shi, J., Ortigao, J.A.R. and Bai, J. (1998), "Modular neural networks for predicting settlements during tunneling", J. Geotech. Geoenviron. Eng., 124(5), 389-395. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(389)
  72. Shi, X., Yu, X. and Esmaeili-Falak, M. (2023), "Improved arithmetic optimization algorithm and its application to carbon fiber reinforced polymer-steel bond strength estimation", Compos. Struct., 306, 116599.
  73. Sivakugan, N., Eckersley, J. and Li, H. (1998), "Settlement predictions using neural networks", Australian Civil Eng. Transactions, 40, 49-52.
  74. Smola, A.J. and Scholkopf, B. (2004), "A tutorial on support vector regression, statist", Comput, 14, 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.
  75. Soleimani, S., Jiao, P., Rajaei, S. and Forsati, R. (2018), "A new approach for prediction of collapse settlement of sandy gravel soils", Eng. with Comput., 34(1), 15-24. https://doi.org/10.1007/s00366-017-0517-y.
  76. Standard, A. (2008), "Standard test method for standard penetration test (SPT) and split-barrel sampling of soils".
  77. Su, H., Zhang, L. and Yu, S. (2007), "Short-term traffic flow prediction based on incremental support vector regression", Proceedings of the 3rd International Conference on Natural Computation (ICNC 2007), 1, 640-645. https://doi.org/10.1109/ICNC.2007.661.
  78. Tarawneh, B. (2017), "Predicting standard penetration test N-value from cone penetration test data using artificial neural networks", Geosci. Front., 8(1), 199-204. https://doi.org/10.1016/j.gsf.2016.02.003
  79. Tarawneh, B., Masada, T. and Sargand, S. (2013), "Estimated and measured settlements of shallow foundation supporting bridge substructure", Jordan J. Civil Eng., 7(2), 224-235.
  80. Teh, C.I., Wong, K.S., Goh, A.T.C. and Jaritngam, S. (1997), "Prediction of pile capacity using neural networks", J. Comput. Civil Eng., 11(2), 129-138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129).
  81. Trenchard, H. (2012), "American coot collective on-water dynamics", ArXiv Preprint ArXiv:1205.5929.
  82. Tsai, H.C., Tyan, Y.Y., Wu, Y.W. and Lin, Y.H. (2013), "Determining ultimate bearing capacity of shallow foundations using a genetic programming system", Neural Comput. Appl., 23(7), 2073-2084. https://doi.org/10.1007/s00521-012-1150-8.
  83. Wang, L., Wu, C., Gu, X., Liu, H., Mei, G. and Zhang, W. (2020), "Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines", Bull. Eng. Geol. Environ., 79(6), 2763-2775. https://doi.org/10.1007/s10064-020-01730-0.
  84. Whitman, R.V. (2000), "Organizing and evaluating uncertainty in geotechnical engineering", J. Geotech. Eng., 126(7), 583-593. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(583)
  85. Yaseen, Z.M., Afan, H.A. and Tran, M.T. (2018), "Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm", Proceedings of the IOP Conference Series: Earth and Environmental Science, 143(1), 12025. https://doi.org/10.1088/1755-1315/143/1/012025.
  86. Yaseen, Z.M., Tran, M.T., Kim, S., Bakhshpoori, T. and Deo, R.C. (2018), "Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach", Eng. Struct., 177, 244-255. https://doi.org/10.1016/j.engstruct.2018.09.074.
  87. Yang, C., Feng, H. and Esmaeili-Falak, M. (2022), "Predicting the compressive strength of modified recycled aggregate concrete",  Struct. Concrete, 23(6), 3696-3717. https://doi.org/10.1002/suco.202100681.
  88. Yuan, J., Zhao, M. and Esmaeili-Falak, M. (2022), "A comparative study on predicting the rapid chloride permeability of self-compacting concrete using meta-heuristic algorithm and artificial intelligence techniques", Struct. Concrete, 23(2), 753-774. https://doi.org/10.1002/suco.202100682.
  89. Zhang, W. and Goh, A.T.C. (2012), "Reliability assessment on ultimate and serviceability limit states and determination of critical factor of safety for underground rock caverns", Tunn. Undergr. Sp. Tech., 32, 221-230. https://doi.org/10.1016/j.tust.2012.07.002
  90. Zhu, W., Huang, L., Mao, L. and Esmaeili-Falak, M. (2022), "Predicting the uniaxial compressive strength of oil palm shell lightweight aggregate concrete using artificial intelligence-based algorithms", Struct. Concrete, 23(6), 3631-3650. https://doi.org/10.1002/suco.202100656.