DOI QR코드

DOI QR Code

Experimental investigation of earth pressure on retaining wall and ground settlement subjected to tunneling in confined space

  • Jinyuan, Wang (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Wenjun, Li (China Harbour Engineering Company Ltd.) ;
  • Rui, Rui (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Yuxin, Zhai (China Railway Construction Group Co., Ltd.) ;
  • Qing, He (China Fortune Land Development Co., Ltd.)
  • Received : 2021.09.03
  • Accepted : 2023.01.06
  • Published : 2023.01.25

Abstract

To study the influences of tunneling on the earth pressure and ground settlement when the tunnel passes through the adjacent underground retaining structure, 30 two-dimensional model tests were carried out taking into account the ratios of tunnel excavation depth (H) to lateral width (w), excavation width (B), and excavation distance using a custom-made test device and an analogical soil. Tunnel crossing adjacent existing retaining structure (TCE) and tunnel crossing adjacent newly-built retaining structure (TCN) were simulated and the earth pressure variations and ground settlement distribution during excavation were analyzed. For TCE condition, the earth pressure increments, maximum ground settlement and the curvature of the ground settlement curve are negatively related to H/B, but positively related to H/s and H/w. For TCN condition, most trends are consistent with TCE except that the earth pressure increments and the curvature of ground settlement curve are negatively related to H/w. The maximum ground settlement is larger than that observed in tunnel crossing the existing underground structure. This study provides an assessment basis for the design and construction under confined space conditions.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (No. 51909192).

References

  1. Attewell, P.B. and Woodman, J.P. (1982), "Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil", Ground Eng., 15(8), 13-20.
  2. Buchatskii, G.V., Zaitsev, A.N., Chernyakov, E.V., Bartoshevich, I.K., Konovalov, P.A. and Nikiforova, N.S. (2001), "Experience with construction of underground sections of buildings by the 'From top down' scheme", Soil Mech. Found. Eng., 38(4), 137-141. https://doi.org/10.1023/A:1012512125133.
  3. Chakeri, H., Ozcelik, Y. and Unver, B. (2013), "Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB", Tunn. Undergr. Sp.Tech., 36, 14-23. https://doi.org/10.1016/j.tust.2013.02.002.
  4. Coulomb, C.A. (1776), "Essais sur une application des regles des maximis et minimis a quelques problems de statique relatits a l'architecture", Mem. Acad. Roy. Pres. Divers, Sav., Paris, France.
  5. Dias, D. and Kastner, R. (2013), "Movements caused by the excavation of tunnels using face pressurized shields -Analysis of monitoring and numerical modeling results", Eng. Geol., 152(1), 17-25. https://doi.org/10.1016/j.enggeo.2012.10.002.
  6. Ding, Z., Wei, X.J. and Wei, G. (2017), "Prediction methods on tunnel-excavation induced surface settlement around adjacent building", Geomech. Eng., 12(2), 185-195. https://doi.org/10.12989/GAE.2017.12.2.185.
  7. Handy, L.R. (1985), "The arch in soil arching", J. Geotech. Eng. - ASCE, 111(3), 302-318. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302).
  8. Harrop-Williams, K.O. (1989), "Geostatic wall pressures", J. Geotech. Eng. -ASCE, 115(9), 1321-1325. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:9(1321).
  9. Hesami, S., Ahmadi, S. and Ghalesari A.T. (2019), "Ground surface settlement prediction in urban areas due to tunnel excavation by the NATM", Elec. J. Geotech. Eng., 18, 1961-1972.
  10. Hunt, D.V.L., Makana, L.O., Jefferson, I. and Rogers, C.D.F. (2016), "Liveable cities and urban underground space", Tunn. Undergr. Sp. Tech., 55, 8-20. https://doi.org/10.1016/j.tust.2015.11.015.
  11. Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Archit. Engineers, 78( 22), 355-358.
  12. Janssen, H.A. (1895), "Versuche uber Getreidedruck in Silozellen", Verein Deutscher Ingenieure, 39, 1045-1049. (Partial English Translation in Proceedings of Institute of Civil Engineers, London, England, 1896: 553.)
  13. Jenck, O. and Dias, D. (2004), "3D-finite difference analysis of the interaction between concrete building and shallow tunnelling", Geotechnique, 54(8), 519-528. https://doi.org/10.1680/geot.2004.54.8.519.
  14. Kakrasul, J.I. (2018), "Geosynthetic-reinforced retaining walls with limited fill space under static footing loading", Ph.D. Dissertation, Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence.
  15. Kavvadas, M.J. (2005), "Monitoring ground deformation in tunnelling: Current practice in transportation tunnels", Eng. Geol., 79(1-2), 93-113. https://doi.org/10.1016/j.enggeo.2004.10.011.
  16. Khosravi, M.H., Pipatpongsa, T. and Takemura, J. (2013), "Experimental analysis of earth pressure against rigid retaining walls under translation mode", Geotechnique, 63(12), 1020. https://doi.org/10.1680/geot.12.P.021.
  17. Lam, S.Y., Haigh, S.K. and Bolton, M.D. (2014), "Understanding ground deformation mechanisms for multi-propped excavation in soft clay", Soils Found., 54(3), 296-312. https://doi.org/10.1016/j.sandf.2014.04.005.
  18. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413.
  19. Leung, C. and Meguid, M.A. (2011), "An experimental study of the effect of local contact loss on the earth pressure distribution on existing tunnel linings", Tunn. Undergr. Sp. Tech., 26(1), 139-145. https://doi.org/10.1016/j.tust.2010.08.003.
  20. Matsuo, M., Kenmochi, S. and Yagi, H. (1978), "Experimental study on earth pressure of retaining wall by field tests", J. Jap. Soc. Soil Mech. Found. Eng., 18(3), 27-41. https://doi.org/10.3208/sandf1972.18.3_27.
  21. Paik, K.H. and Salgado, R. (2003), "Estimation of active earth pressure against rigid retaining walls considering arching effects", Geotechnique, 53(7), 643-654. https://doi.org/10.1680/geot.2003.53.7.643.
  22. Peck, R.B. (1969), "Deep excavations and tunneling in soft ground", Proceedings of the 7th International Conference of Soil Mechanics & Foundation Engineering, Mexico.
  23. Rankine, W.J.M. (1857), "On the stability of loose earth", Philos. T. Roy. Soc. London, 147, 9-27. https://doi.org/10.1098/rstl.1857.0003
  24. Rowe, R.K., Lo, K.Y. and Kack, G.J. (1983), "A method of estimating surface settlement above tunnels constructed in soft ground", Can. Geotech. J., 20(1), 11-22. https://doi.org/10.1139/t83-002.
  25. Rui, R., Zhai, Y.X., Han, J., van Eekelen, S.J.M. and Chen, C. (2019), "Deformations in trapdoor tests and piled embankments", Geosynthetics Int., 27(2), 219-235. https://doi.org/10.1680/jgein.19.00014.
  26. Som, M.N. and Das, S.C. (2003), Theory and Practice of Foundation Design, PHI Learning Pvt. Ltd., Delhi, India.
  27. Srikar, G. and Mittal, S. (2021), "Analysis of retaining wall built near rock face for different wall movements", Indian Geotech. J., 1-10. https://doi.org/10.1007/s40098-021-00548-1.
  28. Stiros, S.C. and Kontogianni, V.A. (2009), "Coulomb stress changes: from earthquakes to underground excavation failures", Int. J. Rock Mech. Min. Sci., 46(1), 182-187. https://doi.org/10.1016/j.ijrmms.2008.09.013.
  29. Terzaghi, K. (1934), "Large retaining wall test", Eng. News Record, 112(20), 136-140.
  30. Wei, G. (2010), "Selection and distribution of ground loss ratio induced by shield tunnel construction", Chinese J. Geotech. Eng., 32(9), 1354-1361.
  31. White, D.J., Take, W.A. and Bolton, M.D. (2003), "Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry", Geotechnique, 53(7), 619-631. https://doi.org/10.1680/geot.2003.53.7.619.
  32. Yamaguchi, I., Yamazaki, I. and Kiritani, Y. (1998), "Study of ground-tunnel interactions of four shield tunnels drive in close proximity, in relation to design and construction of parallel tunnels", Tunn. Undergr. Sp. Tech., 13(3), 289-304. https://doi.org/10.1016/S0886-7798(98)00063-7.
  33. Yoo, C., Park, S.W., Kim, B. and Ban, H. (2019), Geotechnical aspects of underground construction in soft ground. CRC Press, Boca Raton, FL, USA.
  34. Yum, S.G., Ahn, S., Bae, J. and Kim, J.M. (2020), "Assessing the risk of natural disaster-induced losses to tunnel-construction projects using empirical financial-loss data from South Korea", Sustainability, 12(19), 8026. https://doi.org/10.3390/su12198026.