DOI QR코드

DOI QR Code

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong, Zhang (Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology) ;
  • Xuansheng, Cheng (Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology) ;
  • Xinhai, Zhou (Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology) ;
  • Yue, Sun (Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology)
  • Received : 2022.09.29
  • Accepted : 2022.12.24
  • Published : 2023.01.25

Abstract

This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 52178389), and the Science and Technology Planning Project of Zhejiang Traffic Quality Supervision Industry (Grant No. ZJ201906).

References

  1. Anagnostou, G. (2012), "The contribution of horizontal arching to tunnel face stability", Geotechnik, 35(1), 34-44. https://doi.org/10.1002/gete.201100024.
  2. Anagnostou, G. and Kovari, K. (1996), "Face stability conditions with earth-pressure-balanced shields", Tunn. Undergr. Sp. Tech., 11(2), 165-173. https://doi.org/10.1016/0886-7798 (96)00017 -X.
  3. Alagha, A.S.N. and Chapman, D.N. (2019), "Numerical modelling of tunnel face stability in homogeneous and layered soft ground", Tunn. Undergr. Sp. Tech., 94(11), 1-14. https://doi.org/10.1016/j.tust.2019.103096.
  4. Ahmed, M. and Iskander, M. (2012), "Evaluation of tunnel face stability by transparent soil models", Tunn. Undergr. Sp. Tech., 27(1), 101-110. https://doi.org/10.1016/j.tust.2011.08.001.
  5. Broere, W. (2001), "Tunnel face stability & new CPT applications", Ph. D. Dissertation; Delft University of Technology, Delft, Netherlands.
  6. Broms, B.B. and Bennermark, H. (1967), "Stability of clay at vertical openings", J. Soil Mech. Found Div., 93(1),71-94. https://doi.org/10.1061/JSFEAQ.0000946
  7. Chen, R.P., Lin, X.T. and Wu, H.N. (2019), "An analytical model to predict the limit support pressure on a deep shield tunnel face", Comput. Geotech., 115, 1-11. https://doi.org/10.1016/j.compgeo.2019.103174.
  8. Cheng, X.S., Li, G.L., Chen, J., Zhang, K. and Du, X.L. (2018), "Seismic response of a submarine tunnel under the action of a sea wave", Mar. Struct., 60, 122-135. https://doi.org/10.1016/j.marstruc.2018.03.004.
  9. Cheng, X.S., Zhang, S.L., Qi, L. and Zhou, X. H. (2021), "Fluid-solid coupling response of shield tunnel lining structure under high water pressure", Mar. Georesour. Geotec., https://doi.org/10.1080/1064119X.2021.1971805.
  10. Chen, R.P., Tang, L.J., Ling, D.S. and Chen, Y.M. (2011), "Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method", Comput. Geotech., 38(2), 187-195. https://doi.org/10.1016/j.compgeo.2010. 11.003.
  11. Chen, R.P., Li, J., Kong, L.G. and Tang, L.J. (2013), "Experimental study on face instability of shield tunnel in sand", Tunn. Undergr. Sp. Tech., 33, 12-21. https://doi.org/10.1016/j.tust.2012.08.001.
  12. Chen, R.P., Yin, X.S., Tang, L.J. and Chen, Y.M. (2018), "Centrifugal model tests on face failure of earth pressure balance shield induced by steady state seepage in saturated sandy silt ground", Tunn. Undergr. Sp. Tech., 81, 315-325. https://doi.org/10.1016/j.tust.2018.06.031.
  13. Davis, E.H., Gunn, M.J., Mair, R.J. and Seneviratine, H.N. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, 30(4), 397-416. https://doi.org/10.1680/geot.1980.30.4.397.
  14. Horn, N. (1961), "Horizontal earth pressure on the vertical surfaces of the tunnel tubes", Proceedings of the National Conference of the Hungarian Civil Engineering Industry, Budapest, November. 7-16. (In German).
  15. Hu, X.Y., Zhang, Z.X. and Kieffer, S. (2012), "A real-life stability model for a large shield-driven tunnel in heterogeneous soft soils", Front. Struct. Civ. Eng., 6, 176-187. https://doi.org/10.1007/s11709-012-0149-7.
  16. Han, K.H., Zhan, C.P. and Zhang, D.L. (2016), "Upper-bound solutions for the face stability of a shield tunnel in multilayered cohesive-frictional soils", Comput. Geotech., 79(10), 1-9. https://doi.org/10.1016/j.compgeo.2016.05.018.
  17. Hu, X.Y. and Zhang, Z.X. (2013), "Research on particle flow approach for modeling face failure mechanism in slurry shield tunneling under complex ground conditions", Chin. J. Rock Mech. Eng., 32(11), 2258-2267.
  18. Ibrahim, E., Soubra, A.H., Mollon, G., Raphael, W., Dias, D. and Reda. A. (2015), "Three-dimensional face stability analysis of pressurized tunnels driven in a multilayered purely frictional medium", Tunn. Undergr. Sp. Tech., 49(6), 18-34. https://doi.org/10.1016/j.tust.2015.04.001.
  19. Idinger, G., Aklik, P., Wu, W. and Borja, R.I. (2011), "Centrifuge model test on the face stability of shallow tunnel", Acta Geotech., 6(2), 105-117. https://doi.org/10.1007/s11440-011-0139-2.
  20. Jancsecz, S. and Steiner, W. (1994), "Face support for a large mix-shield in Heterogeneous ground conditions", Symposium Tunnelling' 94. London:Chapman and Hall Limited, 531-550.
  21. Leca, E. and Dormieux, L. (1990), "Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material", Geotechnique., 40(4), 581-606. https://doi.org/10.1680/geot.1 990.40.4.581.
  22. Lee, I.M., Nam, S.W. and Alm, J.H. (2003), "Effect of seepage forces on tunnel face stability", Can. Geotech. J., 40(2), 342-350. https://doi.org/10.1139/t02-120.
  23. Lei, H.Y., Zhang, Y.J., Hu, Y. and Liu, Y.N. (2021), "Model test and discrete element method simulation of shield tunneling face stability in transparent clay", Front. Struct. Civ. Eng., 15, 147-166. https://doi.org/10.1007/s11709-020-0704-6.
  24. Lv, X.L., Zhou, Y.C. and Li, F.D. (2016), "Centrifuge model test and numerical simulation of stability of excavation face of shield tunnel in silty sand", Rock Soil Mech., 37(11), 3324-3328+3335. https://doi.org/10.16285/j.rsm.2016.11.035.
  25. Lu, P., Yuan, D.J., Chen, J., Jin, D.L., Wu, J. and Luo, W.P. (2021), "Face stability analysis of slurry shield tunnels in rock-soil interface mixed ground", KSCE J. Civ. Eng., 25(6), 2250-2260. https://doi.org/10.1007/s12205-021-1254-8.
  26. Liu, K.Q., Dias, D., Ding, W.T. and Chen, R. (2021), "Influence of soil-arching effect on tunnel face stability", Int. J. Geomech., 21(7), 04021107. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002060.
  27. Li, W., Zhang, C.P., Tan, Z.B. and Ma, M.S. (2021), "Effect of the seepage flow on the face stability of a shield tunnel", Tunn. Undergr. Sp. Tech., 112(2021), 103900. https://doi.org/10.1016/j.tust.2021.103900.
  28. Mollon, G., Dias, D. and Soubra, A.H. (2010), "Face stability analysis of circular tunnels driven by a pressurized shield", J. Geotech. Geoenviron. Eng., 136(1), 215-229. https://doi.org/10.1061/(ASCE)GT.1943 -5606.0000194.
  29. Mollon, G., Dias, D. and Soubra, A.H. (2011), "Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield", Int. J. Numer. Anal. Met., 35(12), 1363-1388. https://doi.org/10.1002/nag.962.
  30. Perazzelli, P., Leone, T. and Anagnostou, G. (2014), "Tunnel face stability under seepage flow conditions", Tunn. Undergr. Sp. Tech., 43, 459-469. https://doi.org/10.1016/j.tust.2014.03.001.
  31. Qiao, J.L., Zhang, Y.T. and Gao, J. (2010), "Stability analysis of shield tunnel face in multilayer soil with seepage", Rock Soil Mech., 31(5), 1497-1502. https://doi.org/10.3969/j.issn. 1000-7598.2010.05.025.
  32. Senent, S. and Jimenez, R. (2015), "A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse", Tunn. Undergr. Sp. Tech., 47, 182-192. https://doi.org/10.1016/j.tust.2014.12.014.
  33. Tang, X.W., Liu, W., Albers, B. and Savidis, S. (2013), "Upper bound analysis of tunnel face stability in layered soils", Acta Geotech., https://doi.org/10.1007/s11440-013-0256-1.
  34. Ukritchon, B., Yingchaloenkitkhajorn, K. and Keawsawasvong, S. (2017), "Three-dimensional undrained tunnel face stability in clay with a linearly increasing shear strength with depth", Comput. Geotech., 88, 146-151. https://doi.org/10.1016/j.compgeo.2017.03.013.
  35. Wang, J., Lin, G.J., Xu, G.W., Wei,Y.Q., Li, S.Q., Tang, X. and He, C. (2021), "Face stability of EPB shield tunnels in multilayered ground with soft sand lying on hard rock considering dynamic excavation process: A DEM study", Tunn. Undergr. Sp. Tech., 120, 1-15. https://doi.org/10.1016/j.tust.2021.104268.
  36. Wang, H.R., Huang, M.S., Lv, X.L. and Zhou, W.X. (2013), "Upper-bound limit analysis of stability of shield tunnel face considering seepage", Chin. J. Geotech. Eng., 35(9), 1697-1704.
  37. Wang, J. (2017), "Study on the disturbance induced by EPB shield tunneling in mixed ground with soft sand lying on hard rock", Ph.D. Dissertation; Xinan Jiaotong University, Chengdu, China (in Chinese).
  38. Xue, Y.G., Li, X., Qiu, D.H., Ma, X.M., Kong, F.M., Qu, C.Q. and Zhao, Y. (2019), "Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis", Geomech. Eng., 19(3), 283-293. https://doi.org/10.12989/gae.2019.19.3.283.
  39. Zhong, J.H. and Yang, X.L. (2020), "Kinematic stability of tunnel face in nonuniform soils", KSCE J. Civ. Eng., 24(2), 670-681. https://doi.org/10.1007/s12205-020-0996-z.
  40. Zou, J.F. and Qian, Z.H. (2018), "Face-stability analysis of tunnels excavated below groundwater considering coupled flow deformation", Int. J. Geomech., 18(8), 04018089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001199.
  41. Zhang, C.P., Li, W., Zhu, W.J. and Tan, Z.B. (2020), "Face stability analysis of a shallow horseshoe-shaped shield tunnel in clay with a linearly increasing shear strength with depth", Tunn. Undergr. Sp. Tech., 97, 103291. https://doi.org/10.1016/j.tust.2020.103291.
  42. Zhang, S.L., Cheng, X.S. Qi, L. and Zhou, X.H. (2022), "Face stability analysis of large diameter shield tunnel in soft clay considering high water pressure seepage", Ocean Eng., https://doi.org/1 0.1016/j.oceaneng.2022.111283. https://doi.org/10.1016/j.oceaneng.2022.111283