DOI QR코드

DOI QR Code

A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach

  • Samia M., Said (Department of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2021.10.26
  • Accepted : 2022.12.29
  • Published : 2023.01.25

Abstract

The current article studied wave propagation in a nonlocal porous thermoelastic half-space with temperature-dependent properties. The problem is solved in the context of the Green-Lindsay theory (G-L) and the Lord- Shulman theory (L-S) based on thermoelasticity with memory-dependent derivatives. The governing equations of the porous thermoelastic solid are solved using normal mode analysis with an eigenvalue approach. In order to illustrate the analytical developments, the numerical solution is carried out, and the effect of local parameter and temperature-dependent properties on the physical fields are presented graphically.

Keywords

References

  1. Aouadi, M. (2010), "A theory of thermoelastic diffusion materials with voids", Z. Angew. Math. Phys., 61(4), 357-379. https://doi.org/10.1007/s00033-009-0016-0.
  2. Artan, R. (1996), "Nonlocal elastic half plane loaded by a concentrated force", Int. J. Eng. Sci., 34(8), 943-950. https://doi.org/10.1016/0020-7225(95)00132-8.
  3. Caputo, M. and Mainardi, F. (1971), "Linear model of dissipation in an elastic solids", La Rivista del Nuovo Cimento, 1,161-198. https://doi.org/10.1007/BF02820620.
  4. Caputo, M. (1974), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Aco. Soc. Amer., 56(3), 897-904. https://doi.org/10.1121/1.1903344.
  5. Ching, H.K. and Chen, J.K. (2007), "Thermal stress analysis of functionally graded composites with temperature dependent material properties", J. Mech. Mat. Struct., 2(4), 633-653. https://msp.org/jomms/2007/2-4/jomms-v2-n4-p03-p.pdf. https://doi.org/10.2140/jomms.2007.2.633
  6. Ciarletta, M. and Scalia, A. (1993), "On the nonlinear theory of nonsimple thermoelastic materials with voids", Z. Angew. Maths. Mech., 73(2), 67-75. https://doi.org/10.1002/zamm.19930730202.
  7. Das, N.C. and Bhakata, P.C. (1985), "Eigenfunction expansion method to the solution of simultaneous equations and its application in mechanics", Mech. Res. Commun., 12 (1), 19-29. https://doi.org/10.1016/0093-6413(85)90030-8.
  8. D'Apice, C. and Chirita, S. (2016), "Plane harmonic waves in the theory of thermo-viscoelastic materials with voids", J. Therm. Stress., 39(2), 142-155. https://doi.org/10.1080/01495739.2015.1123972.
  9. Eringen, A.C. (2002), "Nonlocal continuum field theories", New York (NY): Springer.
  10. Hetnarski, R.B. and Eslami, M.R. (2009), "Thermal stressadvanced theory and applications", (Springer Science Business Media, B.V., New York.
  11. He, T. and Shi, S. (2014), "Effect of temperature-dependent properties on thermoelastic problems with thermal relaxations", Acta Mech. Solida Sin., 27, 412-419. https://doi.org/10.1016/S0894-9166(14)60049-5.
  12. Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimensional medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.
  13. Iesan, D. (1986), "A theory of thermoelastic material with voids", Acta Mechanica, 60(6), 67-89. https://doi.org/10.1007/BF01302942.
  14. Inan, E. and Eringen, A.C (1991), "Nonlocal theory of wave propagation in thermoelastic plates", Int. J. Eng. Sci., 29, 831-843. https://doi.org/10.1016/0020-7225(91)90005-N.
  15. Kaur, I., Lata, P. and Singh, K. (2022a), "Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam", Struct. Eng. Mech., 81(1), 29-37. https://doi.org/10.12989/SEM.2022.81.1.029.
  16. Kumar, R. and Devi, S. (2011), "Deformation in porous thermoelastic material with temperature dependent properties", Appl. Math. Inform. Sci., 5(1), 132-147. http://www.naturalspublishing.com/files/published/kr3t7gl6m2u303.pdf.
  17. Lata, P. and Singh, S. (2020), "Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force", Geomech. Eng., 22(2), 109-117. https://doi.org/10.12989/gae.2020.22.2.109.
  18. Lata, P. (2021), "Effect of two-temperature in an orthotropic thermoelastic media with fractional order heat transfer", Comp. Mater. Eng., 3(3), 241-262. https://doi.org/10.12989/cme.2021.3.3.241.
  19. Lata, P. and Himanshi, H. (2022b), "Rotational and fractional effect on Rayleigh waves in an orthotropic magnetothermoelastic media with hall current", Steel Compos. Struct., 42( 6,) 723-732. https://doi.org/10.12989/scs.2022.42.6.723.
  20. Lata, P. and Himanshi, H. (2022c), "Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer", Struct. Eng. Mech., 81(5), 529-537. https://doi.org/10.12989/sem.2022.81.5.529.
  21. Lata, P. and Singh, S. (2022d), "Rayleigh wave propagation in a nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", GEM - Int. J. Geomathematics, 13(1), 5. https://doi.org/10.1007/s13137-022-00195-5.
  22. Lata, P. and Himanshi, H. (2022e), "Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer", Struct. Eng. Mech., 81(5), 529-537. https://doi.org/10.12989/sem.2022.81.5.529
  23. Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno)., 33(4), 301-308. http://dml.cz/dmlcz/107618. 107618
  24. Montanaro, A. (1999), "On singular surfaces in isotropic linear thermoelasticity with initial stress", J. Acoust Soc. Am., 106(3), 1586-1588. https://doi.org/10.1121/1.427154.
  25. Noda, N. (1986), "Thermal stresses in materials with temperature-dependent properties", Thermal Stresses I, (Ed., R.B. Hetnarski), North-Holland, Amsterdam.
  26. Othman, M.I.A., Alharbi, A.M. and Al-Autabi, AL. M. Kh. (2020), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomech. Eng., 21(5), 447-459. https://doi.org/10.12989/gae.2020.21.5.447.
  27. Roy, I., Acharya, D.P. and Acharya, S. (2015), "Rayleigh wave in a rotating nonlocal magneto-elastic half-plane", J. Theor. Appl. Mech., 45(4), 61-78. https://doi.org/10.1515/jtam-2015-0024.
  28. Said, S.M. (2020), "The effect of phase-lags and gravity on micropolar thermoelastic medium with temperature dependent properties", J. Porous Media, 23(4), 395-412. https://doi.org/10.1615/JPorMedia.2020020275.
  29. Said, S.M., Abd-Elaziz, El.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
  30. Sarkar, N. and Lahiri, A. (2012), "Eigenvalue approach to two-temperature magneto-thermoelasticity", Vietnam J. Math., 40(1), 1-18. http://www.math.ac.vn/publications/vjm/VJM_40/PDF_40_1_2012/13-30_Sarkar-Lahiri.pdf.
  31. Sarkar, N. and Tomar, S.K. (2019), "Plane waves in nonlocal thermoelastic solid with voids", J. Therm. Stress., 42(5), 580-606. https://doi.org/10.1080/01495739.2018.1554395.
  32. Sellitto, A., Jou, D. and Bafaluy, J. (2012), "Non-local effects in radial heat transport in silicon thin layers and grapheme sheets", Proc. R. Soc. A Math. Phys. Eng. Sci., 468(2141), 1217-1229. https://doi.org/10.1098/rspa.2011.0584.
  33. Shaw, S. and Mukhopadhyay, B. (2013), "Moving heat source response in micropo- lar half-space with two-temperature theory", Continum Mech. Thermody., 25(2-4), 523-535. https://doi.org/10.1007/s00161-012-0284-3.
  34. Singh, B. (2007), "Wave propagation in a generalized thermoelastic material with voids", Appl. Math. Comput., 189(1), 698-709. https://doi.org/10.1016/j.amc.2006.11.123.
  35. Singh, D., Kaur, G. and Tomar, S.K. (2017), "Waves in nonlocal elastic solid with voids", J. Elast., 128(6), 85-114. https://doi.org/10.1007/s10659-016-9618-x.