DOI QR코드

DOI QR Code

Effect of Sowing Dates on Agronomic Traits and Quality of Seed for Soybean [Glycine max (L.) Merr.] in Southern Area of Korea

  • Hye Rang Park (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Sanjeev Kumar Dhungana (University of California, Division of Agriculture and Natural Resource, Lindcove Research and Extension Center) ;
  • Beom Kyu Kang (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong Hyun Seo (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Jun Hoi Kim (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Su Vin Heo (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Ji Yoon Lee (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Won Young Han (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Hong-Tai Yun (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration) ;
  • Choon Song Kim (Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration)
  • Received : 2023.11.15
  • Accepted : 2023.11.22
  • Published : 2023.12.01

Abstract

Owing to adverse weather conditions, there is a heightened focus on actively researching the regulation of the sowing date in field crop cultivation. Soybean, a prominent field crop with extensive acreage and production, is a photophilic and thermophilic crop characterized by short-day photoperiodism. Identifying the optimal sowing time is crucial for mitigating the effects of severe weather conditions on soybean yield. Precise control over the timing of soybean sowing is the key to minimizing yield reduction due to unfavorable weather conditions. Temperature, photoperiod, and their interplay are the most significant factors influencing soybean cultivation among various weather factors. We conducted an experiment using three Korean soybean cultivars with varied maturities (Hwangkeumol: early maturing and Daewonkong and Pungsannamulkong: late maturing) in 2013 and 2014. Our investigation covered aspects of soybean growth, development, yield components, isoflavones, and visual seed quality. Across all three varieties, isoflavone levels increased with later sowing dates, while other measured components exhibited significant variations based on the sowing date. This study also provides valuable insights for the selection of suitable cultivars that perform well in soybean cultivation at various durations of maturity.

Keywords

Acknowledgement

This research was supported by the development of new soybean cultivars to improve processing quality and functionality (Project No. PJ014839042023) of the National Institute of Crop Sciences, Rural Development Administration (Miryang, Korea).

References

  1. Agele, S. O., A. R. Adenawoola, and M. Deherty. 2004. Growth response of soybean lines to contrasting photo-thermal and soil moisture regimes in a Nigerian tropical rainforest. Int. J. Biotronics. 33 : 49-64. 
  2. Alliprandini, L., F. C. Abatti, P. F. Bertagnolli, J. E. Cavassim, H. L. Gabe, A. Kurek, M. N. Matsumoto, M. A. R. deOliveira, C. Pitol, L. C. Prado, and C. Steckling. 2009. Understanding soybean maturity groups in Brazil: Environment, cultivar classification, and stability. Crop Sci. 49 : 801-808. https://doi.org/10.2135/cropsci2008.07.0390. 
  3. Arshad, M., N. Ali, and A. Ghafoor. 2006. Character correlation and path coefficient in soybean Glycine max (L.) Merrill. Pak. J. Bot. 38 : 121-130. 
  4. Bajaj, S., P. Chen, D. E. Longer, A. Hou, A. Shi, T. Ishilbashi, B. Zhang, and K. R. Brye. 2008. Planting date and irrigation effects on seed quality of early-maturing soybean in the Mid-South USA. J. New Seeds 9 : 212-233. https://doi.org/10.1080/15228860802228800. 
  5. Bastidas, A. M., T. D. Setiyono, A. Dobermann, K. G. Cassman, R. W. Elmore, G. L. Graef, and J. E. Specht. 2008. Soybean sowing date: The vegetative, reproductive, and agronomic impacts. Crop Sci. 48 : 727-740. https://doi.org/10.2135/cropsci2006.05.0292. 
  6. Beatty, K. D., I. L. Eldridge, and A. M. Simpson 1982. Soybean response to different planting patterns and dates. Agron. J. 74 : 859-862. https://doi.org/10.2134/agronj1982.00021962007400050021x. 
  7. Below, F. E. 2015. Six Secrets Special Report. Secrets of Soybean Success. University of Illinois, Illinois. 
  8. Board, J. E. and J. R. Settimi. 1986. Photoperiod effect before and after flowering on branch development in determinate soybean. Agron. J. 78 : 995-1002. https://doi.org/10.2134/agronj1986.00021962007800060013x. 
  9. Borowska, M. and J. Prusinski. 2021. Effect of soybean cultivars sowing dates on seed yield and its correlation with yield parameters. Plant Soil Environ. 67 : 360-366. https://doi.org/10.17221/73/2021-PSE. 
  10. Caldwell, C. R., S. J. Britz, and R. M. Mirecki. 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L.) Merrill] grown in controlled environments. J. Agric. Food Chem. 53 : 1125-1129. https://doi.org/10.1021/jf0355351. 
  11. Camara, G. M. S., T. Sediyama, D. Dourado-Neto, and M. S. Bernardes. 1997. Influence of photoperiod and air temperature on the growth, flowering and maturation of soybean (Glycine max (L.) Merrill). Sci. Agric. 54 : 149-154. https://doi.org/10.1590/S0103-90161997000300017. 
  12. Cober, E. R., D. W. Stewart, and H. D. Voldeng. 2001. Photoperiod and temperature responses in early-maturing, near-isogenic soybean lines. Crop Sci. 41 : 721-727. https://doi.org/10.2135/cropsci2001.413721x. 
  13. Constable, G. A. and I. A. Rose. 1988. Variability of soybean phenology response to temperature, daylength and rate of change in daylength. Field Crops Res. 18 : 57-69. https://doi.org/10.1016/0378-4290(88)90059-7. 
  14. Cooper, R. L. 2003. A delayed flowering barrier to higher soybean yields. Field Crops Res. 82 : 27-35. https://doi.org/10.1016/S0378-4290(03)00003-0. 
  15. De Bruin, J. L. and P. Pedersen. 2008. Soybean seed yield response to planting date and seeding rate in the upper midwest. Agron J. 100 : 696-703. https://doi.org/10.2134/agronj2007.0115. 
  16. Dhungana, S. K., J. H. Seo, B. K. Kang, J. H. Park, J. H. Kim, J. S. Sung, I. Y. Baek, S. O. Shin, and C. S. Jung. 2021. Protein, amino acid, oil, fatty acid, sugar, anthocyanin, isoflavone, lutein, and antioxidant variations in colored seed-coated soybeans. Plants. 10. https://doi.org/10.3390/plants10091765. 
  17. Egli, D. B. 2013. The relationship between the number of nodes and pods in soybean communities. Crop Sci. 53 : 1668-1676. https://doi.org/10.2135/cropsci2012.11.0663. 
  18. Egli, D. B. and P. L. Cornelius. 2009. A regional analysis of the response of soybean yield to planting date. Agron. J. 101 : 330-335. https://doi.org/10.2134/agronj2008.0148. 
  19. Egli, D. B. and W. P. Bruening. 2000. Potential of early-maturing soybean cultivars in late plantings. Agron. J. 92 : 532-537. https://doi.org/10.2134/agronj2000.923532x. 
  20. Egli, D. B., R. D. Guffy, and J. E. Leggett. 1985. Partitioning of assimilate between vegetative and reproductive growth in soybean. Agron. J. 77 : 917-922. https://doi.org/10.2134/agronj1985.00021962007700060020x. 
  21. Elmore, R. W. 1990. Soybean cultivar response to tillage systems and planting date. Agron. J. 82 : 69-73. https://doi.org/10.2134/agronj1990.00021962008200010015x. 
  22. Ferrari, M., I. R. Carvalho, A. J. Pelegrin, M. Nardino, V. J. Szareski, T. Olivoto, D. N. Follmann, C. Pegoraro, L. C. Maia, V. Q. Souza, and T. C. Rosa. 2018. Path analysis and phenotypic correlation among yield components of soybean using environmental stratification methods. Aust. J. Crop Sci. 12 : 193-202. https://doi.org/10.21475/ajcs.18.12.02.pne488. 
  23. Gaspar, A. P. and S. P. Conley. 2015. Responses of canopy reflectance, light interception, and soybean seed yield to replanting suboptimal stands. Crop Sci. 55 : 377-385. https://doi.org/10.2135/cropsci2014.03.0200. 
  24. Hadley, P., E. H. Roberts, R. J. Summerfield, and F. R. Minchin 1984. Effects of temperature and photoperiod on flowering in soya bean [Glycine max (L.) Merrill]: a quantitative model. Ann Bot 53 : 669-681. https://doi.org/10.1093/oxfordjournals.aob.a086732. 
  25. Haegele, J. W. and F. E. Below. 2013. The Six Secrets of Soybean Success. Improving Management Practices for High Yield Soybean Production. University of Illinois Department of Crop Sciences. 
  26. Heatherly, L. G. and R. W. Elmore. 2016. Managing Inputs for Peak Production. In: Shibles RM, Harper JE, Wilson RF, Shoemaker RC (eds) Agronomy Monographs. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, USA, pp 451-536. 
  27. Hoeck, J. A., W. R. Fehr, P. A. Murphy, and G. A. Welke. 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40 : 48-51. https://doi.org/10.2135/cropsci2000.40148x. 
  28. Iqbal, S., T. Mahmood, M. Ali, M. Anwar, and M. Sarwar. 2004. Path coefficient analysis in different genotypes of soybean (Glycine max (L) Merril). Pak. J. Biol. Sci. 6 : 1085-1087.  https://doi.org/10.3923/pjbs.2003.1085.1087
  29. Jung, G.-H., J.-E. Lee, Y.-H. Kim, D. W. Kim, T. Y. Hwang, K. S. Lee, B. M. Lee, H. S. Kim, Y. U. Kwon, and S. L. Kim. 2012. Effect of planting date, temperature on plant growth, isoflavone content, and fatty acid composition of soybean. Korean J. Crop Sci. 57 : 373-383. https://doi.org/10.7740/KJCS.2012.57.4.373. 
  30. Kandil, A. A., A. E. Sharief, A. R. Morsy, and A. I. M. El-Sayed. 2012. Performance of some promising genotypes of soybean under different planting dates using biplots analysis. J. Basic Appl. Sci. 8(2) : 379-385. https://doi.org/10.6000/1927-5129.2012.08.02.22. 
  31. Kandil, A. A., A. E. Sharief, A. R. Morsy, and A. I. M. El-Sayed. 2013. Influence of planting date on some genotypes of soybean growth, yield and seed quality. J. Biol. Sci. 13 : 146-151. https://doi.org/10.3923/jbs.2013.146.151. 
  32. Kane, M. V., C. C. Steele, L. J. Grabau, C. T. MacKown, and D. F. Hildebrand. 1997. Early-maturing soybean cropping system: III. protein and oil contents and oil composition. Agron. J. 89 : 464-469. https://doi.org/10.2134/agronj1997.00021962008900030016x. 
  33. Kang, Y.-K., M.-R. Ko, N.-K. Cho, and Y.-M. Park. 1998. Effect of planting date and planting density on growth and yield of soybean in Cheju Island. Korean J. Crop Sci. 43 : 44-48. 
  34. Kasai, A., S. Ohnishi, H. Yamazaki, H. Funatsuki, T. Kurauchi, T. Matsumoto, S. Yumoto, and M. Senda. 2009. Molecular mechanism of seed coat discoloration induced by low temperature in yellow soybean. Plant Cell Physiol. 50 : 1090-1098. https://doi.org/10.1093/pcp/pcp061. 
  35. Kilpatrick, R. A. 1957. Fungi associated with the flowers, pods, and seeds of soybeans. Phytopathology. 47 : 131-135. 
  36. Kim, E.-H., S.-L. Kim, S.-H. Kim, and I.-M. Chung. 2012. Comparison of isoflavones and anthocyanins in soybean [Glycine max (L.) Merrill] seeds of different planting dates. J. Agric. Food Chem. 60 : 10196-10202. https://doi.org/10.1021/jf3031259. 
  37. Kumagai, E. and T. Takahashi. 2020. Soybean (Glycine max (L.) Merr.) yield reduction due to late sowing as a function of radiation interception and use in a cool region of northern Japan. Agronomy 10 : 66. https://doi.org/10.3390/agronomy10010066. 
  38. Lawn, R. J. and D. E. Byth. 1973. Response of soya beans to planting date in south-eastern Queensland. I. Influence of photoperiod and temperature on phasic developmental patterns. Aust. J. Agric. Res. 24 : 67. https://doi.org/10.1071/AR9730067. 
  39. Lee, J. E., G. H. Jung, S. K. Kim, M. T. Kim, S. H. Shin, and W. T. Jeon. 2019. Effects of Growth Period and Cumulative Temperature on Flowering, Ripening and Yield of Soybean by Sowing Times. Korean J. Crop Sci. 64(4) : 406-413. https://doi.org/10.7740/kjcs.2019.64.4.406. 
  40. Lee, J. H., K. H. Park, M.-H. Lee, H.-T. Kim, W. D. Seo, J. Y. Kim, I.-Y. Baek, D. S. Jang, and T. J. Ha. 2013. Identification, characterisation, and quantification of phenolic compounds in the antioxidant activity-containing fraction from the seeds of Korean perilla (Perilla frutescens) cultivars. Food Chem. 136 : 843-852. https://doi.org/10.1016/j.foodchem.2012.08.057. 
  41. Li, S., G. Sciumbato, D. Boykin, G. Shannon, and P. Chen. 2019. Evaluation of soybean genotypes for reaction to natural field infection by Cercospora species causing purple seed stain. PLOS ONE 14 : e0222673. https://doi.org/10.1371/journal.pone.0222673. 
  42. Lozovaya, V. V., A. V. Lygin, A. V. Ulanov, R. L. Nelson, J. Dayde, and J. M. Widholm. 2005. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 45 : 1934-1940. https://doi.org/10.2135/cropsci2004.0567. 
  43. Major, D. J., D. R. Johnson, J. W. Tanner, and I. C. Anderson. 1975. Effects of daylength and temperature on soybean development. Crop Sci. 15 : 174-179. https://doi.org/10.2135/cropsci1975.0011183X001500020009x. 
  44. Malik, M. F. A., M. Ashraf, A. S. Qureshi, and A. Ghafoor. 2007. Assessment of genetic variability, correlation and path analyses for yield and its components in soybean. Pak. J. Bot. 39 : 405-413. 
  45. Mandic, V., S. Dordevic, Z. Bijelic, V. Krnjaja, V. Pantelic, A. Simic, and V. Dragicevic. 2020. Agronomic responses of soybean genotypes to starter nitrogen fertilizer rate. Agronomy 10 : 535. https://doi.org/10.3390/agronomy10040535. 
  46. Mourtzinis, S., J. E. Specht, and S. P. Conley. 2019. Defining optimal soybean sowing dates across the US. Sci. Rep. 9:2800. https://doi.org/10.1038/s41598-019-38971-3. 
  47. Murakishi, H. H. 1951. Purple seed stain of soybean. Phytopathology. 41 : 305-318.
  48. Pacumbaba, R. P. 1995. Seed transmission of soybean mosaic virus in mottled and nonmottled soybean seeds. Plant Dis. 79 : 193. https://doi.org/10.1094/PD-79-0193. 
  49. Park, H. J., W. Y. Han, K. W. Oh, H. T. Kim, S. O. Shin, B. W. Lee, J. M. Ko, and I. Y. Baek. 2014. Growth and Yield Components Responses to Delayed Planting of Soybean in Southern Region of Korea. Korean J. Crop Sci. 59(4) : 483-491.  https://doi.org/10.7740/kjcs.2014.59.4.483
  50. Park, H. J., W. Y. Han, K. W. Oh, J. M. Ko, J. W. Bae, and Y. W. Jang. 2015. Sowthern and Yield Responses of Soybean to Planting Density in Late Planting. Korean J. Crop Sci. 60(3) : 343-348.  https://doi.org/10.7740/kjcs.2015.60.3.343
  51. Pereira, E. B. C., A. V. Pereira, and A. C. Fraga. 2000. Seed quality of early maturing soybean cultivars from different sowing dates. Pesqui. Agropecuaria Bras. 35 : 1653-1662. https://doi.org/10.1590/S0100-204X2000000800019. 
  52. Ploper, L. D., T. S. Abney, and K. W. Roy. 1992. Influence of soybean genotype on rate of seed maturation and its impact on seedborne fungi. Plant Dis. 76 : 287-292.  https://doi.org/10.1094/PD-76-0287
  53. R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. online: https://www.r-project.org. Last accessed on November 1, 2023. 
  54. Rockenbach, A. P., B. O. Caron, V. Q. Souza, E. F. Elli, D. M. Oliveira, and G. C. Monteiro. 2016. Estimated length of soybean phenological stages. Semina. Cienc. Agrar. 37 : 1871. https://doi.org/10.5433/1679-0359.2016v37n4p1871. 
  55. Roy, K. W. 1976. Purple seed stain of soybeans. Phytopathology. 66 : 1045. 
  56. Sarutayophat, T. 2012. Correlation and path coefficient analysis for yield and its components in vegetable soybean. Songklanakarin J. Sci. Technol. 34 : 273-277. 
  57. Schaik, P. H. and A. H. Probst. 1958. Effects of some environmental factors on flower production and reproductive efficiency in soybeans. Agron. J. 50 : 192-197. https://doi.org/10.2134/agronj1958.00021962005000040007x. 
  58. Settimi, J. R. and J. E. Board. 1988. Photoperiod and planting date effects on the spatial distribution of branch development in soybean. Crop Sci. 28 : 259-263. https://doi.org/10.2135/cropsci1988.0011183X002800020016x. 
  59. Sincik, M., A. T. Goksoy, and Z. M. Turan. 2011. How growth dynamics affect soybean development across cultural practices. In: Ng T-B (ed) Soybean: Applications and Technology. InTech, Rijeka, Croatia. pp. 37-54. 
  60. Sweeney, D. W., G. V. Granade, and R. O. Burton. 1995. Early and traditionally maturing soybean varieties grown in two planting systems. J. Prod. Agric. 8 : 373-379. https://doi.org/10.2134/jpa1995.0373. 
  61. Thomas, J. F. and C. D. Raper. 1976. Photoperiodic control of seed filling for soybeans. Crop Sci. 16 : 667-672. https://doi.org/10.2135/cropsci1976.0011183X001600050017x. 
  62. Thomison, P. R., D. L. Jeffers, and A. F. Schmitthenner. 1987. Phomopsis seed decay and nutrient accumulation in soybean under two soil moisture levels. Agron. J. 79 : 913-918. https://doi.org/10.2134/agronj1987.00021962007900050032x. 
  63. Tkachuk, D. 2017. Evaluation of soybean (Glycine max) planting dates and plant densities in northern growing regions of the Northern Great Plains. Master's Thesis, University of Manitoba. 
  64. Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43 : 1184-1192. https://doi.org/10.1021/jf00053a012. 
  65. Wilcox, J. A., W. J. Wiebold, K. D. Kephart, and T. L. Niblack. 1995. Growth and development of soybean isolines that differ for maturity. Agron. J. 87 : 932-935. https://doi.org/10.2134/agronj1995.00021962008700050026x. 
  66. Wilcox, J. R. and E. M. Frankenberger. 1987. Indeterminate and determinate soybean responses to planting date. Agron. J. 79 : 1074-1078. https://doi.org/10.2134/agronj1987.00021962007900060025x. 
  67. Wilcox, J. R. and T. Sediyama. 1981. Interrelationships among height, lodging and yield in determinate and indeterminate soybeans. Euphytica. 30 : 323-326. https://doi.org/10.1007/BF00033993. 
  68. Wilcox, J. R., T. S. Abney, and E. M. Frankenberger. 1985. Relationships between seedborne soybean fungi and altered photoperiod. Phytopathology. 75 : 797-800.  https://doi.org/10.1094/Phyto-75-797
  69. Wrather, J. A.1996. Cultivar and planting date effects on soybean stand, yield, and Phomopsis sp. seed infection. Plant Dis. 80 : 622. https://doi.org/10.1094/PD-80-0622. 
  70. Wu, T., J. Li, C. Wu, C. Wu, S. Sun, T. Mao, B. Jiang, W. Hou, and T. Han. 2015. Analysis of the independent- and interactive-photo-thermal effects on soybean flowering. J. Integr. Agric. 14 : 622-632. https://doi.org/10.1016/S2095-3119(14)60856-X. 
  71. Zhang, S.-R., H. Wang, Z. Wang, Y. Ren, L. Niu, J. Liu, and B. Liu. 2017. Photoperiodism dynamics during the domestication and improvement of soybean. Sci. China Life Sci. 60 : 1416-1427. https://doi.org/10.1007/s11427-016-9154-x.