DOI QR코드

DOI QR Code

재배지역 차이에 따른 쌀귀리 영양성분 및 기능성 성분 비교

Comparison of the Nutritional and Functional Compounds in Naked Oats (Avena sativa L.) Cultivated in Different Regions

  • 송지혜 (전남대학교 응용생물학과) ;
  • 김대욱 (국립식량과학원 작물재배생리과) ;
  • 오학영 (전남대학교 응용생물학과) ;
  • 윤종탁 (국립식량과학원 작물재배생리과) ;
  • 국용인 (순천대학교 바이오한약자원학과) ;
  • 양광열 (전남대학교 응용생물학과)
  • Ji-Hye Song (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Dea-Wook Kim (Crop protection and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Hak-Young Oh (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Jong-Tak Yun (Crop protection and Physiology Division, National Institute of Crop Science, Rural Development Administration) ;
  • Yong-In Kuk (Department of Oriental Medicine Resources, Sunchon National University, Sunchon National University) ;
  • Kwang-Yeol Yang (Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University)
  • 투고 : 2023.10.12
  • 심사 : 2023.11.13
  • 발행 : 2023.12.01

초록

기후변화에 대응하기 위해 재배지역 차이에 따른 쌀귀리(Avena sativa L.)의 품질을 비교하고자 재배지역이 다른 G1과 G2 그룹의 국내 농가에서 쌀귀리 조양 품종을 2020년부터 2022년까지 3년 동안 수집하여 외관 품질, 영양성분, 기능성 성분 등을 분석하였다. 외관 품질의 경우는 2020년에 G2지역에서 명도와 황색도에서 G1지역에 비해 유의하게 높게 나타나 차이가 있었지만 다른 연도에서는 재배지역간에 차이가 없었다. 쌀귀리 종자의 활력을 검정한 결과는 2022년에서만 G1지역에서 G2지역보다 전기전도도 값이 유의적으로 낮게 나타났다. 영양성분 중에서 수분 함량은 3개년 모두에서 G1지역보다 G2지역에서 더 높게 나타났으며 조단백질 함량 역시 모든 연도에서 G1지역보다 G2지역에서 유의적으로 높게 나타났다. 탄수화물 함량은 조단백질 함량과 반비례하게 3년간 모든 연도에서 G2지역보다 G1지역에서 유의미하게 높게 나타났다. 조지방 함량은 2022년을 제외하고 G2지역보다 G1지역에서 유의미하게 높게 나타난 경향을 보였다. 그리고 쌀귀리에 풍부하게 함유되어 있는 기능성 성분인 베타글루칸을 분석한 결과 3.4-4.2% 범위로 나타났으며 2020년을 제외하고 재배지역간의 유의적인 차이는 없었다. 또한 귀리에만 존재하는 대표적인 기능성 성분인 아베난쓰라마이드는 2021년과 2022년 2년에 걸쳐 함량을 분석한 결과, 아베난쓰라마이드 함량은 2.4-20.7 ㎍/g 범위로 나타났으며 2년 모두 G2지역에서 G1지역보다 유의적으로 아베난쓰라마이드 함량이 높게 나타나는 경향을 보였다. 본 연구가 진행되는 재배지역간의 기온을 파악하기 위해 2020년부터 2022년까지 쌀귀리 생육기의 평균기온과 최저기온 평균값을 조사한 결과, 재배 한계지로 설정된 G2지역과 주산지로 설정된 G1지역 해남의 1월 평균기온과 1월 최저기온 평균값이 유사하였다. 결론적으로 재배지역 차이에 따라 재배되고 있는 쌀귀리 품질에서 일부 영양성분과 기능성 성분에 차이를 확인하였기에 기후변화로 인해 쌀귀리의 재배면적이 확대되는 상황에서 품질에 영향을 미치는 성분들의 변화에 대한 지속적인 연구가 필요할 것으로 사료된다.

To cope with climate change, we compared the quality of naked oats (Avena sativa L.) cultivated in different regions. Naked oats were collected from domestic farms in different cultivation regions grouped as G1 and G2 for 3 years (2020-2022). The appearance, quality, and nutritional and functional compounds in the samples were assessed. In terms of appearance quality, the brightness and yellowness of the samples from the G1 region were significantly lower than those of the samples from the G2 region in 2020; however, no differences were observed between cultivation regions in the other 2 years. The results of testing the vitality of naked oats seeds showed that the electrical conductivity value was significantly lower in the samples from the G1 region than in those from the G2 region only in 2022. Among the nutritional components, moisture content was higher in the G2 region than in the G1 region over all 3 years, and the crude protein content was significantly higher in the G2 region than in the G1 region over all years. Carbohydrate content was significantly higher in the G1 region than in the G2 region in all 3 years and was inversely proportional to the crude protein content. The crude fat content tended to be significantly higher in the G1 region than in the G2 region, except in 2022. The levels of beta-glucan, a functional compound rich in naked oats, ranged between 3.4% and 4.2%, and except in 2020, there was no significant difference between cultivation regions. In addition, the content of avenanthramides, representative functional compounds that exist only in oats, was assessed. Over 2 years, in 2021 and 2022, the avenanthramide content was in the range of 2.4-20.7 ㎍/g and tended to be significantly higher in the G2 region than in the G1 region in both years. According to a survey of the average and minimum temperatures during the growing season of naked oats from 2020 to 2022, the average and minimum temperatures in January in the G2 region, which is the cultivation-limit area, were similar to those in Haenam in the G1 region. In conclusion, differences in nutritional and functional compounds were observed in naked oats grown in different cultivation areas. Therefore, considering the cultivation area of naked oats is expanding because of climate change, changes in the compounds that affect quality should be investigated.

키워드

과제정보

본 논문은 농촌진흥청 공동연구사업(기후변화에 따른 식량작물(맥류)의 재배적지 한계선과 저온요구도 실태조사 및 영향 평가(1단계),제3공동, RS-2020-RD008569)의 지원으로 수행되었으며 이에 감사드립니다.

참고문헌

  1. Ahn, S. H., D. W. Kim, H. S. Lee, J. H. Jeong, H. Y. Jeong, W. H. Hwang, J. S. Baek, K. J. Choi, I. B. Choi, H. K. Park, J. T. Youn, and G. J. Kim. 2017. Changes in physicochemical properties in wheat grains as influenced by average temperature rise during ripening stage. Journal of the Korean Society of International Agriculture. 29(1) : 50-55. https://doi.org/10.12719/KSIA.2017.29.1.50
  2. Aman, P. and H. Graham. 1987. Analysis of total and insoluble mixed-linked (1→3), (1→4)-β-d-glucans in barley and oats. Journal of Agricultural and Food Chemistry. 35(5) : 704-709. https://doi.org/10.1021/jf00077a016
  3. Anderson, J. W., N. J. Gustafson, C. A. Bryant, and J. Tietyen-Clark. 1987 Dietary fiber and diabetes: a comprehensive review and practical application. Journal of the American Dietetic Association. 87(9) : 1189-1197. https://doi.org/10.1016/S0002-8223(21)03297-1
  4. AOAC. 2019. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International. 21st Edition, AOAC, Washington DC.
  5. Cho, C. O., H. Y. Jeong, Y. R. Kim, J. H. Park, K. H. Kim, K. M. Kim, C. S. Kang, J. M. Ko, and J. Y. Shon. 2022. Growth and quality characteristics of korean bread wheat in response to elevated temperature during their growing season. Korean Journal of Crop Science. 67(4) : 234-241 (in Korean with English abstract).
  6. Du, B., M. Meenu, H. Liu, and B. Xu. 2019. A Concise review on the molecular structure and function relationship of β-Glucan. International Journal of Molecular Sciences. 20(16).
  7. Emmons, C. L. and D. M. Peterson. 2001. Antioxidant activity and phenolic content of oat as affected by cultivar and location. Crop Science. 41 : 1676-1681. https://doi.org/10.2135/cropsci2001.1676
  8. Emmons, C. L., D. M. Peterson, and G. L. Paul. 1999. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. Journal of Agricultural and Food Chemistry. 47 : 4894-4898. https://doi.org/10.1021/jf990530i
  9. Hall, R. and L. Wiesner. 1990. Relationship between seed vigor tests and field performance of 'Regar' meadow bromegrass. Crop Science. 30 : 967-970. https://doi.org/10.2135/cropsci1990.0011183X003000050001x
  10. Hampton. J., K. Johnstone, and V. Eua-umpon. 1992. Bulk conductivity test variables for mungbean, soybean and French bean seed lots. Seed Science and Technology. 20 : 677686.
  11. Han, O. K., H. H. Park, T. I. Park, J. H. Seo, K. H. Park, J. G. Kim, H. Y. Heo, Y. G. H, and D. H. Kim. 2008. A New Early-Heading and High-Yielding Naked Oat Cultivar for Human Consumption, 'Choyang'. Korean Journal of Breeding Science. 40(4) : 512-516.
  12. Henrion, M., C. Francey, K. A. Le, and L. Lamothe. 2019. Cereal B-glucans: The impact of processing and how it affects physiological responses. Nutrients. 11(8) : 1729.
  13. Intergovernmental Panel on Climate Change (IPCC; https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii). 2022. Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the IPCC, Cambridge, Cambridge University Press.
  14. Jeong, H. S., T. S. Kang, I. S. Jung, H. J. Park, and Y. K. Min. 2003. β-glucan contents with different particle size and varieties of barley and oats. Korean Journal of Food Science and Technology. 35(4) : 610-616 (in Korean with English abstract).
  15. Ji, L. L., D. Lay, E. Chung, Y. Fu, and D.M. Peterson. 2003. Effects of avenanthramides on oxidant generation and antioxidant enzyme activity in exercised rats. Nutrition Research. 23(11) : 1579-1590. https://doi.org/10.1016/S0271-5317(03)00165-9
  16. Kim, C. E., M. Y. Kang, and M. H. Kim. 2012b. Comparison of properties affecting the palatability of 33 commercial brands of rice. Korean Journal of Crop Science. 57(3) : 301-309 (in Korean with English abstract). https://doi.org/10.7740/KJCS.2012.57.3.301
  17. Kim, D. J., J. H. Kim, J. H. Roh, and J. I. Yun. 2012a. Geographical migration of winter barley in the korean peninsula under RCP8.5 projected climate condition. Korean Journal of Agricultural and Forest Meteorology. 14(4) : 161-169 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2012.14.4.161
  18. Lee, H. S., D. W. Kim, W. H. Hwang, J. H. Jeong, S. H. Ahn, J. S. Baek, J. R. Kang, H. Y. Jeong, J. T. Yun, G. H. Lee, and K. J. Choi. 2016. Change of physicochemical properties in barley kernels by high temperature during the ripening stage. Journal of Korean Society of International Agriculture. 28(3) : 358-363. (in Korean with English abstract) https://doi.org/10.12719/KSIA.2016.28.3.358
  19. Lee, M. J., S. Y. Park, Y. K. Kim, H. S. Kim, H. H. Park, Y. J. Lee, and H. S. Jeong. 2017. Physicochemical properties and β-glucan contents of Korean naked oat (Avena sativa L.) cultivars. Korean Journal of Food Science and Technology. 49(1) : 97-103 (in Korean with English abstract). https://doi.org/10.9721/KJFST.2017.49.1.97
  20. Lee, S. K., H. M. Yoon, M. C. Lee, S. J. Oh, M. Rauf, O. S. Hur, N. Y. Ro, J. Y., Yi, D. Y. Hyun, G. T. Cho, H. C. Ko, and Y. M. Choi. 2019. Comparison of the diversity of east asian oat (Avena sativa L.) genetic resources by origins, considering major nutritional ingredients and agronomic traits. Korean Journal of Breeding Science. 51(1) : 9-19 (in Korean with English abstract). https://doi.org/10.9787/KJBS.2019.51.1.9
  21. Lee, Y. Y., Y. R. Son, M. S. Kang, M. H. Kim, J. Y. Lee, and H. J. Kim. 2021. Functional components and antioxidant activities by temperature and growing days of sprouted oats. Journal of the Korean Society of Food Science and Nutrition. 50(11) : 1161-1167 (in Korean with English abstract). https://doi.org/10.3746/jkfn.2021.50.11.1161
  22. Li, X. P., M. Y. Li, A. J. Ling, X. Z. Hu, Z. Ma, L. Liu, and Y. X. Li. 2017. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. Journal of Cereal Science. 73 : 130-137. https://doi.org/10.1016/j.jcs.2016.12.005
  23. Lim, W. and C. Kang. 2020. Avenanthramide C suppresses hypoxia-induced cyclooxygenase-2 expression through sirtuin1 activation in non-small-cell lung cancer cells. Animal Cells and Systems. 24(2) : 79-83. https://doi.org/10.1080/19768354.2020.1748108
  24. Liu, P., W. Guo, Z. Jiang, H. Pu, C. Peng, X. Zhu, Y. Peng, A. Kuang, and C.R. Little. 2011. Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). Journal of Agricultural Science. 149(2) : 159-169. https://doi.org/10.1017/S0021859610001024
  25. Malmstrom, C. M. and R. Shu. 2004. Multiplexed RT-PCR for streamlined detection and separation of barley and cereal yellow dwarf viruses. Journal of Virology Methods. 120(1) : 69-78. https://doi.org/10.1016/j.jviromet.2004.04.005
  26. Malunga, L. N., N. Ames, J. M. Fetch, T. Netticadan, and S. J. Thandapilly. 2022. Genotypic and environmental variations in phenolic acid and avenanthramide content of Canadian oats (Avena sativa). Food Chemistry. 388 : 132904.
  27. Mayama, S., Y. Matsuura, H. Iida, and T. Tani. 1982. The role of avenalumin in the resistance of oat to crown rust, Puccinia coronata f. sp. avenae. Physiological Plant Pathology. 20(2) : 189-199. https://doi.org/10.1016/0048-4059(82)90084-4
  28. Meydani, M. 2009. Potential health benefits of avenanthramides of oats. Nutrition Reviews. 67(12) : 731-735. https://doi.org/10.1111/j.1753-4887.2009.00256.x
  29. National Institute of Meteorological Sciences (NIMS). 2018. Report on climate change for 100 years over the Korean Peninsula. 11-1360620-000132-01 (in Korean).
  30. Park, H. H. and Y. I. Kuk. 2021. Differences in seed vigor, early growth, and secondary compounds in hulled and dehulled barley, malting barley, and naked oat collected from various areas. Korean Journal of Crop Science. 66(2) : 171-181 (in Korean with English abstract). https://doi.org/10.7740/KJCS.2021.66.2.171
  31. Park, H. H., H. J. Lee, S. W. Roh, H. Hwangbo, and Y. I. Kuk. 2022. Evaluation of cultivation limit area for different types of barley owing to climate change based on cultivation status and area of certified seed request. Korean Journal of Crop Science. 67(2) : 95-110 (in Korean with English abstract). https://doi.org/10.7740/KJCS.2022.67.2.095
  32. Park, H. H., H. J. Lee, Y. G. Kim, D. W. Kim, and Y. I. Kuk. 2023. Comparative analysis of growth, yield, and grain quality of hulled barley grown under different meteorological conditions in South Korea. Korean Journal of Crop Science. 68(2) : 69-80 (in Korean with English abstract). https://doi.org/10.7740/KJCS.2023.68.2.069
  33. Peterson, D. M. and L. H. Dimberg. 2008. Avenanthramide concentrations and hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyltransferase activities in developing oats. Journal of Cereal Science. 47(1) : 101-108. https://doi.org/10.1016/j.jcs.2007.02.007
  34. Peterson, D. M., D. M. Wesenberg, D. E. Burrup, and C. A. Erickson. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Science. 45 : 1249-1255. https://doi.org/10.2135/cropsci2004.0063
  35. Ramasamy, V. S., S. Manikandan, H. J. Park, M. Wang, R. Park, S.Y. Yu, H. Kang, S. Hong, W. Choi, Y. Y. Lee, H. S. Kim, and J. Jo. 2020. Avenanthramide-C restores impaired plasticity and cognition in Alzheimer's disease model mice. Molecular Neurobiology. 57 : 315-330. https://doi.org/10.1007/s12035-019-01707-5
  36. Saastamoinen, M., S. Plaami, and J. Kumpulainen. 1992. Genetic and environmental variation in β-glucan content of oats cultivated or tested in Finland. Journal of Cereal Science. 16(3) : 279-290. https://doi.org/10.1016/S0733-5210(09)80090-8
  37. Son, Y. R., J. H. Lee, H. H. Park, B. W. Lee, H. J. Kim, S. I. Han, K. S. Woo, B. K. Lee, S. C. Lee, and Y. Y. Lee. 2018. Changes in functional compounds and antioxidant activities in storage duration with accelerated age-conditioning of oats. Korean Journal of Crop Science. 63(2) : 149-157 (in Korean with English abstract).
  38. Spiertz, J. H. J., R. J. Hamer, H. Xu, C. Primo-Martin, C. Don, and P. E. L. van der Putten. 2006. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. European Journal of Agronomy. 25(2) : 89-95. https://doi.org/10.1016/j.eja.2006.04.012
  39. Tashiro, T. and I. F. Wardlow. 1989. A Comparison of the effect of high temperature on grain development in wheat and rice. Annals of Botany. 64(1) : 59-65. https://doi.org/10.1093/oxfordjournals.aob.a087808
  40. Tiwari, U. and E. Cummins. 2009. Simulation of the factors affecting β-glucan levels during the cultivation of oats. Journal of Cereal Science. 50(2) : 175-183. https://doi.org/10.1016/j.jcs.2009.04.014