DOI QR코드

DOI QR Code

PDZ Peptide of the ZO-1 Protein Significantly Increases UTP-Induced MUC8 Anti-Inflammatory Mucin Overproduction in Human Airway Epithelial Cells

  • Han Seo (Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine) ;
  • Hyun-Chae Lee (Department of Medical Science, Kosin University College of Medicine) ;
  • Ki Chul Lee (Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine) ;
  • Doosik Kim (Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine) ;
  • Jiwook Kim (Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine) ;
  • Donghee Kang (Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine) ;
  • Hyung-Joo Chung (Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine) ;
  • Hee-Jae Cha (Department of Genetics, Kosin University College of Medicine) ;
  • Jeongtae Kim (Department of Anatomy, Kosin University College of Medicine) ;
  • Kyoung Seob Song (Department of Medical Science, Kosin University College of Medicine)
  • Received : 2023.07.03
  • Accepted : 2023.09.03
  • Published : 2023.11.30

Abstract

Mucus hyperproduction and hypersecretion are observed often in respiratory diseases. MUC8 is a glycoprotein synthesized by epithelial cells and generally expressed in the respiratory track. However, the physiological mechanism by which extracellular nucleotides induce MUC8 gene expression in human airway epithelial cells is unclear. Here, we show that UTP could induce MUC8 gene expression through P2Y2-PLCβ3-Ca2+ activation. Because the full-length cDNA sequence of MUC8 has not been identified, a specific siRNA-MUC8 was designed based on the partial cDNA sequence of MUC8. siRNA-MUC8 significantly increased TNF-α production and decreased IL-1Ra production, suggesting that MUC8 may downregulate UTP/P2Y2-induced airway inflammation. Interestingly, the PDZ peptide of ZO-1 protein strongly abolished UTP-induced TNF-α production and increased IL-1Ra production and MUC8 gene expression. In addition, the PDZ peptide dramatically increased the levels of UTP-induced ZO proteins and TEER (trans-epithelial electrical resistance). These results show that the anti-inflammatory mucin MUC8 may contribute to homeostasis, and the PDZ peptide can be a novel therapeutic candidate for UTP-induced airway inflammation.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2021R1A4A1031380 to H.J.C. [Hee-Jae Cha], J.K. [Jeongtae Kim], and K.S.S.).

References

  1. Cha, H.J., Jung, M.S., Ahn, D.W., Choi, J.K., Ock, M.S., Kim, K.S., Yoon, J.H., Song, E.J., and Song, K.S. (2015). Silencing of MUC8 by siRNA increases P2Y2-induced airway inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L495-L502. https://doi.org/10.1152/ajplung.00332.2014
  2. Cha, H.J. and Song, K.S. (2018). Effect of MUC8 on airway inflammation: a friend or a foe? J. Clin. Med. 7, 26.
  3. Fahy, J.V. and Dickey, B.F. (2010). Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233-2247. https://doi.org/10.1056/NEJMra0910061
  4. Gisler, S.M., Kittanakom, S., Fuster, D., Wong, V., Bertic, M., Radanovic, T., Hall, R.A., Murer, H., Biber, J., Markovich, D., et al. (2008). Monitoring protein-protein interactions between the mammalian integral membrane transporters and PDZ-interacting partners using a modified split-ubiquitin membrane yeast two-hybrid system. Mol. Cell. Proteomics 7, 1362-1377. https://doi.org/10.1074/mcp.M800079-MCP200
  5. Hauber, H.P., Foley, S.C., and Hamid, Q. (2006). Mucin overproduction in chronic inflammatory lung disease. Can. Respir. J. 13, 327-335. https://doi.org/10.1155/2006/901417
  6. Hwang, J.I., Heo, K., Shin, K.J., Kim, E., Yun, C., Ryu, S.H., Shin, H.S., and Suh, P.G. (2000). Regulation of phospholipase C-beta 3 activity by Na+/H+ exchanger regulatory factor 2. J. Biol. Chem. 275, 16632-16637. https://doi.org/10.1074/jbc.M001410200
  7. Idzko, M., Ferrari, D., and Eltzschig, H.K. (2014). Nucleotide signalling during inflammation. Nature 509, 310-317. https://doi.org/10.1038/nature13085
  8. Kalyoncu, S., Keskin, O., and Gursoy, A. (2010). Interaction prediction and classification of PDZ domains. BMC Bioinformatics 11, 357.
  9. Kang, D.H., Lee, T.J., Kim, J.W., Shin, Y.S., Kim, J.D., Ryu, S.W., Ryu, S., Choi, Y.H., Kim, C.H., You, E., et al. (2020). Down-regulation of diesel particulate matter-induced airway inflammation by the PDZ motif peptide of ZO-1. J. Cell. Mol. Med. 24, 12211-12218. https://doi.org/10.1111/jcmm.15843
  10. Kennedy, M.B. (1995). Origin of PDZ (DHR, GLGF) domains. Trends Biochem. Sci. 20, 350.
  11. Kim, C.H. and Song, K.S. (2022). STAT3 inhibition decreases ATP-induced MUC8 gene expression in human airway epithelial cells. Kosin Med. J. 37, 134-139. https://doi.org/10.7180/kmj.22.102
  12. Kim, V. and Criner, G.J. (2013). Chronic bronchitis and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 187, 228-237. https://doi.org/10.1164/rccm.201210-1843CI
  13. Kornau, H.C., Schenker, L.T., Kennedy, M.B., and Seeburg, P.H. (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737-1740. https://doi.org/10.1126/science.7569905
  14. Kountz, T.S., Jairaman, A., Kountz, C.D., Stauderman, K.A., Schleimer, R.P., and Prakriya, M. (2021). Differential regulation of ATP- and UTP-evoked prostaglandin E2 and IL-6 production from human airway epithelial cells. J. Immunol. 207, 1275-1287. https://doi.org/10.4049/jimmunol.2100127
  15. Lee, H.J. and Zheng, J.J. (2010). PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun. Signal. 8, 8.
  16. Lee, H.M., Kim, D.H., Kim, J.M., Lee, S.H., and Hwang, S.J. (2004). MUC8 mucin gene up-regulation in chronic rhinosinusitis. Ann. Otol. Rhinol. Laryngol. 113, 662-666. https://doi.org/10.1177/000348940411300812
  17. Lee, H.W., Ko, J., and Kim, E. (2006). Analysis of PDZ domain interactions using yeast two-hybrid and coimmunoprecipitation assays. Methods Mol. Biol. 332, 233-244. https://doi.org/10.1385/1-59745-048-0:233
  18. Lee, T.J., Choi, Y.H., and Song, K.S. (2020). The PDZ motif peptide of ZO-1 attenuates Pseudomonas aeruginosa LPS-induced airway inflammation. Sci. Rep. 10, 19644.
  19. Neumann, A., Attah, I., Al-Hroub, H., Namasivayam, V., and Muller, C.E. (2022). Discovery of P2Y2 receptor antagonist scaffolds through virtual high-throughput screening. J. Chem. Inf. Model. 62, 1538-1549. https://doi.org/10.1021/acs.jcim.1c01235
  20. Roy, M.G., Livraghi-Butrico, A., Fletcher, A.A., McElwee, M.M., Evans, S.E., Boerner, R.M., Alexander, S.N., Bellinghausen, L.K., Song, A.S., Petrova, Y.M., et al. (2014). Muc5b is required for airway defence. Nature 505, 412-416. https://doi.org/10.1038/nature12807
  21. Shankar, V., Pichan, P., Eddy, R.L., Jr., Tonk, V., Nowak, N., Sait, S.N., Shows, T.B., Schultz, R.E., Gotway, G., Elkins, R.C., et al. (1997). Chromosomal localization of a human mucin gene (MUC8) and cloning of the cDNA corresponding to the carboxy terminus. Am. J. Respir. Cell Mol. Biol. 16, 232-241. https://doi.org/10.1165/ajrcmb.16.3.9070607
  22. Singanayagam, A., Footitt, J., Marczynski, M., Radicion,i G., Cross, M.T., Finney, L.J., Trujillo-Torralbo, M.B., Calderazzo, M., Zhu, J., Aniscenko, J., et al. (2022). Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. J. Clin. Invest. 132, e120901.
  23. Song, K.S. (2010). Regulatory mechanism of mucous hyperproduction in the airway. Kosin Med. J. 25, 1-5.
  24. Song, K.S., Lee, T.J., Kim, K., Chung, K.C., and Yoon, J.H. (2008). cAMPresponding element-binding protein and c-Ets1 interact in the regulation of ATP-dependent MUC5AC gene expression. J. Biol. Chem. 283, 26869-26878. https://doi.org/10.1074/jbc.M802507200
  25. Spaller, M.R. (2006). Act globally, think locally: systems biology addresses the PDZ domain. ACS Chem. Biol. 1, 207-210. https://doi.org/10.1021/cb600191y
  26. Tian, P.W. and Wen, F.Q. (2015). Clinical significance of airway mucus hypersecretion in chronic obstructive pulmonary disease. J. Transl. Int. Med. 3, 89-92. https://doi.org/10.1515/jtim-2015-0013
  27. Tornavaca, O., Chia, M., Dufton, N., Almagro, L.O., Conway, D.E., Randi, A.M., Schwartz, M.A., Matter, K., and Balda, M.S. (2015). ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J. Cell Biol. 208, 821-838. https://doi.org/10.1083/jcb.201404140
  28. Traut, T.W. (1994). Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140, 1-22. https://doi.org/10.1007/BF00928361
  29. Voynow, J.A. (2002). Encyclopedia of Respiratory Medicine (2nd Edition) (Cambridge: Academic Press).