DOI QR코드

DOI QR Code

Reduced Ceramides Are Associated with Acute Rejection in Liver Transplant Patients and Skin Graft and Hepatocyte Transplant Mice, Reducing Tolerogenic Dendritic Cells

  • Hyun Ju Yoo (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yeogyeong Yi (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yoorha Kang (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Su Jung Kim (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Young-In Yoon (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Phuc Huu Tran (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Taewook Kang (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Min Kyung Kim (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jaeseok Han (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Eunyoung Tak (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Chul-Soo Ahn (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Gi-Won Song (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Gil-Chun Park (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Sung-Gyu Lee (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jae-Joong Kim (Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Dong-Hwan Jung (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Shin Hwang (Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Nayoung Kim (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2023.06.29
  • Accepted : 2023.08.22
  • Published : 2023.11.30

Abstract

We set up this study to understand the underlying mechanisms of reduced ceramides on immune cells in acute rejection (AR). The concentrations of ceramides and sphingomyelins were measured in the sera from hepatic transplant patients, skin graft mice and hepatocyte transplant mice by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Serum concentrations of C24 ceramide, C24:1 ceramide, C16:0 sphingomyelin, and C18:1 sphingomyelin were lower in liver transplantation (LT) recipients with than without AR. Comparisons with the results of LT patients with infection and cardiac transplant patients with cardiac allograft vasculopathy in humans and in mouse skin graft and hepatocyte transplant models suggested that the reduced C24 and C24:1 ceramides were specifically involved in AR. A ceramide synthase inhibitor, fumonisin B1 exacerbated allogeneic immune responses in vitro and in vivo, and reduced tolerogenic dendritic cells (tDCs), while increased P3-like plasmacytoid DCs (pDCs) in the draining lymph nodes from allogeneic skin graft mice. The results of mixed lymphocyte reactions with ceranib-2, an inhibitor of ceramidase, and C24 ceramide also support that increasing ceramide concentrations could benefit transplant recipients with AR. The results suggest increasing ceramides as novel therapeutic target for AR, where reduced ceramides were associated with the changes in DC subsets, in particular tDCs.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (grant Nos. 2015R1A2A2A04007141 to S.H., 2019R1A2C1009175 to D.-H.J., 2019R1A2C1008880 to J.J.K., and 2012K2A5A5035693 and 2019R1A2C1090895 to N.K.). H.J.Y. was supported by the Basic Science Research Program through the NRF funded by the Ministry of Education (2021R1A6A1A03040260 and 2022R1A2C1007901). The authors thank the Laboratory of Animal Research at the ConveRgence mEDIcine research cenTer (CREDIT), Asan Medical Center for technical support. We are also grateful to Prof. Dr. E. Geissler and Drs. E. Eggenhofer, Jordi Rovira, and Margareta Lantow (University of Regensburg, Regensburg, Germany) for helping us establish mouse models, and to Prof. Jung Bok Lee (Asan Medical Center) for statistical analysis.

References

  1. Apostolidis, S.A., Rodriguez-Rodriguez, N., Suarez-Fueyo, A., Dioufa, N., Ozcan, E., Crispin, J.C., Tsokos, M.G., and Tsokos, G.C. (2016). Phosphatase PP2A is requisite for the function of regulatory T cells. Nat. Immunol. 17, 556-564.  https://doi.org/10.1038/ni.3390
  2. Baeyens, A., Fang, V., Chen, C., and Schwab, S.R. (2015). Exit strategies: S1P signaling and T cell migration. Trends Immunol. 36, 778-787.  https://doi.org/10.1016/j.it.2015.10.005
  3. Bajwa, A., Huang, L., Kurmaeva, E., Gigliotti, J.C., Ye, H., Miller, J., Rosin, D.L., Lobo, P.I., and Okusa, M.D. (2016). Sphingosine 1-phosphate receptor 3-deficient dendritic cells modulate splenic responses to ischemia-reperfusion injury. J. Am. Soc. Nephrol. 27, 1076-1090.  https://doi.org/10.1681/ASN.2015010095
  4. Baliga, K.V., Sharma, P.K., Prakash, M.S., and Mostafi, M. (2003). Lipid profile in transplant patients: a clinical study. Med. J. Armed Forces India 59, 32-35.  https://doi.org/10.1016/S0377-1237(03)80101-6
  5. Carretero-Iglesia, L., Bouchet-Delbos, L., Louvet, C., Drujont, L., Segovia, M., Merieau, E., Chiffoleau, E., Josien, R., Hill, M., Cuturi, M.C., et al. (2016). Comparative study of the immunoregulatory capacity of in vitro generated tolerogenic dendritic cells, suppressor macrophages, and myeloid-derived suppressor cells. Transplantation 100, 2079-2089.  https://doi.org/10.1097/TP.0000000000001315
  6. Chistiakov, D.A., Orekhov, A.N., Sobenin, I.A., and Bobryshev, Y.V. (2014). Plasmacytoid dendritic cells: development, functions, and role in atherosclerotic inflammation. Front. Physiol. 5, 279. 
  7. Choudhary, N.S., Saigal, S., Bansal, R.K., Saraf, N., Gautam, D., and Soin, A.S. (2017). Acute and chronic rejection after liver transplantation: what a clinician needs to know. J. Clin. Exp. Hepatol. 7, 358-366.  https://doi.org/10.1016/j.jceh.2017.10.003
  8. Cortes, M., Pareja, E., Garcia-Canaveras, J.C., Donato, M.T., Montero, S., Mir, J., Castell, J.V., and Lahoz, A. (2014). Metabolomics discloses donor liver biomarkers associated with early allograft dysfunction. J. Hepatol. 61, 564-574.  https://doi.org/10.1016/j.jhep.2014.04.023
  9. Draper, J.M., Xia, Z., Smith, R.A., Zhuang, Y., Wang, W., and Smith, C.D. (2011). Discovery and evaluation of inhibitors of human ceramidase. Mol. Cancer Ther. 10, 2052-2061.  https://doi.org/10.1158/1535-7163.MCT-11-0365
  10. Ferreira, G.B., van Etten, E., Verstuyf, A., Waer, M., Overbergh, L., Gysemans, C., and Mathieu, C. (2011). 1,25-Dihydroxyvitamin D3 alters murine dendritic cell behaviour in vitro and in vivo. Diabetes Metab. Res. Rev. 27, 933-941.  https://doi.org/10.1002/dmrr.1275
  11. Guery, L. and Hugues, S. (2013). Tolerogenic and activatory plasmacytoid dendritic cells in autoimmunity. Front. Immunol. 4, 59. 
  12. Gusain, A., Hatcher, J.F., Adibhatla, R.M., Wesley, U.V., and Dempsey, R.J. (2012). Anti-proliferative effects of tricyclodecan-9-yl-xanthogenate (D609) involve ceramide and cell cycle inhibition. Mol. Neurobiol. 45, 455-464.  https://doi.org/10.1007/s12035-012-8254-0
  13. Harper, S.J., Ali, J.M., Wlodek, E., Negus, M.C., Harper, I.G., Chhabra, M., Qureshi, M.S., Mallik, M., Bolton, E., Bradley, J.A., et al. (2015). CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection. Proc. Natl. Acad. Sci. U. S. A. 112, 12788-12793.  https://doi.org/10.1073/pnas.1513533112
  14. Hattori, T., Saban, D.R., Emami-Naeini, P., Chauhan, S.K., Funaki, T., Ueno, H., and Dana, R. (2012). Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. J. Leukoc. Biol. 91, 621-627.  https://doi.org/10.1189/jlb.1011500
  15. He, Q., Suzuki, H., Sharma, N., and Sharma, R.P. (2006). Ceramide synthase inhibition by fumonisin B1 treatment activates sphingolipid-metabolizing systems in mouse liver. Toxicol. Sci. 94, 388-397.  https://doi.org/10.1093/toxsci/kfl102
  16. Hirao, H., Kojima, H., Dery, K.J., Nakamura, K., Kadono, K., Zhai, Y., Farmer, D.G., Kaldas, F.M., and Kupiec-Weglinski, J.W. (2023). Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation. J. Clin. Invest. 133, e162940. 
  17. Hrydziuszko, O., Silva, M.A., Perera, M.T., Richards, D.A., Murphy, N., Mirza, D., and Viant, M.R. (2010). Application of metabolomics to investigate the process of human orthotopic liver transplantation: a proof-of-principle study. OMICS 14, 143-150.  https://doi.org/10.1089/omi.2009.0139
  18. Japtok, L. and Kleuser, B. (2009). The role of sphingosine-1-phosphate receptor modulators in the prevention of transplant rejection and autoimmune diseases. Curr. Opin. Investig. Drugs 10, 1183-1194. 
  19. Kanto, T., Kalinski, P., Hunter, O.C., Lotze, M.T., and Amoscato, A.A. (2001). Ceramide mediates tumor-induced dendritic cell apoptosis. J. Immunol. 167, 3773-3784.  https://doi.org/10.4049/jimmunol.167.7.3773
  20. Kim, N., Yoon, Y.I., Yoo, H.J., Tak, E., Ahn, C.S., Song, G.W., Lee, S.G., and Hwang, S. (2016). Combined detection of serum IL-10, IL-17, and CXCL10 predicts acute rejection following adult liver transplantation. Mol. Cells 39, 639-644.  https://doi.org/10.14348/molcells.2016.0130
  21. Kita, S. and Shimomura, I. (2022). Extracellular vesicles as an endocrine mechanism connecting distant cells. Mol. Cells 45, 771-780.  https://doi.org/10.14348/molcells.2022.0110
  22. Koh, E.H., Yoon, J.E., Ko, M.S., Leem, J., Yun, J.Y., Hong, C.H., Cho, Y.K., Lee, S.E., Jang, J.E., Baek, J.Y., et al. (2021). Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis. Gut 70, 1954-1964.  https://doi.org/10.1136/gutjnl-2020-322509
  23. Liu, Q., Rehman, H., Shi, Y., Krishnasamy, Y., Lemasters, J.J., Smith, C.D., and Zhong, Z. (2012). Inhibition of sphingosine kinase-2 suppresses inflammation and attenuates graft injury after liver transplantation in rats. PLoS One 7, e41834. 
  24. Liu, Z., Zhao, J., Wang, W., Zhu, H., Qian, J., Wang, S., Que, S., Zhang, F., Yin, S., Zhou, L., et al. (2021). Integrative network analysis revealed genetic impact of pyruvate kinase L/R on hepatocyte proliferation and graft survival after liver transplantation. Oxid. Med. Cell. Longev. 2021, 7182914. 
  25. Lopes Pinheiro, M.A., Kroon, J., Hoogenboezem, M., Geerts, D., van Het Hof, B., van der Pol, S.M., van Buul, J.D., and de Vries, H.E. (2016). Acid sphingomyelinase-derived ceramide regulates ICAM-1 function during T cell transmigration across brain endothelial cells. J. Immunol. 196, 72-79.  https://doi.org/10.4049/jimmunol.1500702
  26. Macedo, C., Tran, L.M., Zahorchak, A.F., Dai, H., Gu, X., Ravichandran, R., Mohanakumar, T., Elinoff, B., Zeevi, A., Styn, M.A., et al. (2021). Donor-derived regulatory dendritic cell infusion results in host cell cross-dressing and T cell subset changes in prospective living donor liver transplant recipients. Am. J. Transplant. 21, 2372-2386.  https://doi.org/10.1111/ajt.16393
  27. Majdoubi, A., Lee, J.S., Balood, M., Sabourin, A., DeMontigny, A., Kishta, O.A., Moulefera, M.A., Galbas, T., Yun, T.J., Talbot, S., et al. (2019). Downregulation of MHC class II by ubiquitination is required for the migration of CD206(+) dendritic cells to skin-draining lymph nodes. J. Immunol. 203, 2887-2898.  https://doi.org/10.4049/jimmunol.1900593
  28. Marin, E., Cuturi, M.C., and Moreau, A. (2018). Tolerogenic dendritic cells in solid organ transplantation: where do we stand? Front. Immunol. 9, 274.
  29. Marino, J., Paster, J., and Benichou, G. (2016). Allorecognition by T lymphocytes and allograft rejection. Front. Immunol. 7, 582. 
  30. Melendez, H.V., Ahmadi, D., Parkes, H.G., Rela, M., Murphy, G., and Heaton, N. (2001). Proton nuclear magnetic resonance analysis of hepatic bile from donors and recipients in human liver transplantation. Transplantation 72, 855-860.  https://doi.org/10.1097/00007890-200109150-00020
  31. Merad, M., Sathe, P., Helft, J., Miller, J., and Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31, 563-604.  https://doi.org/10.1146/annurev-immunol-020711-074950
  32. Merola, J., Jane-Wit, D.D., and Pober, J.S. (2017). Recent advances in allograft vasculopathy. Curr. Opin. Organ Transplant. 22, 1-7.  https://doi.org/10.1097/MOT.0000000000000370
  33. Miguet, C., Monier, S., Bettaieb, A., Athias, A., Bessede, G., Laubriet, A., Lemaire, S., Neel, D., Gambert, P., and Lizard, G. (2001). Ceramide generation occurring during 7beta-hydroxycholesterol- and 7-ketocholesterol-induced apoptosis is caspase independent and is not required to trigger cell death. Cell Death Differ. 8, 83-99.  https://doi.org/10.1038/sj.cdd.4400792
  34. Morad, S.A. and Cabot, M.C. (2013). Ceramide-orchestrated signalling in cancer cells. Nat. Rev. Cancer 13, 51-65.  https://doi.org/10.1038/nrc3398
  35. Moreau, A., Kervella, D., Bouchet-Delbos, L., Braudeau, C., Saiagh, S., Guerif, P., Limou, S., Moreau, A., Bercegeay, S., Streitz, M., et al. (2023). A Phase I/IIa study of autologous tolerogenic dendritic cells immunotherapy in kidney transplant recipients. Kidney Int. 103, 627-637.  https://doi.org/10.1016/j.kint.2022.08.037
  36. Mucke, V.T., Gerharz, J., Jakobi, K., Thomas, D., Ferreiros Bouzas, N., Mucke, M.M., Trotschler, S., Weiler, N., Welker, M.W., Zeuzem, S., et al. (2018). Low serum levels of (dihydro-)ceramides reflect liver graft dysfunction in a real-world cohort of patients post liver transplantation. Int. J. Mol. Sci. 19, 991. 
  37. Ocana-Morgner, C., Sales, S., Rothe, M., Shevchenko, A., and Jessberger, R. (2017). Tolerogenic versus immunogenic lipidomic profiles of CD11c(+) immune cells and control of immunogenic dendritic cell ceramide dynamics. J. Immunol. 198, 4360-4372.  https://doi.org/10.4049/jimmunol.1601928
  38. Oh, N.A., O'Shea, T., Ndishabandi, D.K., Yuan, Q., Hong, S., Gans, J., Ge, J., Gibney, S., Chase, C., Yang, C., et al. (2020). Plasmacytoid dendritic cell-driven induction of Treg is strain specific and correlates with spontaneous acceptance of kidney allografts. Transplantation 104, 39-53.  https://doi.org/10.1097/TP.0000000000002867
  39. Pritzl, C.J., Seo, Y.J., Xia, C., Vijayan, M., Stokes, Z.D., and Hahm, B. (2015). A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. J. Immunol. 194, 4339-4349.  https://doi.org/10.4049/jimmunol.1402672
  40. Reizis, B. (2019). Plasmacytoid dendritic cells: development, regulation, and function. Immunity 50, 37-50.  https://doi.org/10.1016/j.immuni.2018.12.027
  41. Riley, R.T. and Merrill, A.H., Jr. (2019). Ceramide synthase inhibition by fumonisins: a perfect storm of perturbed sphingolipid metabolism, signaling, and disease. J. Lipid Res. 60, 1183-1189.  https://doi.org/10.1194/jlr.S093815
  42. Rodriguez-Peralvarez, M., Rico-Juri, J.M., Tsochatzis, E., Burra, P., De la Mata, M., and Lerut, J. (2016). Biopsy-proven acute cellular rejection as an efficacy endpoint of randomized trials in liver transplantation: a systematic review and critical appraisal. Transpl. Int. 29, 961-973.  https://doi.org/10.1111/tri.12737
  43. Rotolo, J.A., Stancevic, B., Lu, S.X., Zhang, J., Suh, D., King, C.G., Kappel, L.W., Murphy, G.F., Liu, C., Fuks, Z., et al. (2009). Cytolytic T cells induce ceramide-rich platforms in target cell membranes to initiate graft-versus-host disease. Blood 114, 3693-3706.  https://doi.org/10.1182/blood-2008-11-191148
  44. Rovira, J., Sabet-Baktach, M., Eggenhofer, E., Lantow, M., Koehl, G.E., Schlitt, H.J., Campistol, J.M., Geissler, E.K., and Kroemer, A. (2013). A color-coded reporter model to study the effect of immunosuppressants on CD8+ T-cell memory in antitumor and alloimmune responses. Transplantation 95, 54-62.  https://doi.org/10.1097/TP.0b013e318276d358
  45. Serkova, N.J., Zhang, Y., Coatney, J.L., Hunter, L., Wachs, M.E., Niemann, C.U., and Mandell, M.S. (2007). Early detection of graft failure using the blood metabolic profile of a liver recipient. Transplantation 83, 517-521.  https://doi.org/10.1097/01.tp.0000251649.01148.f8
  46. Seumois, G., Fillet, M., Gillet, L., Faccinetto, C., Desmet, C., Francois, C., Dewals, B., Oury, C., Vanderplasschen, A., Lekeux, P., et al. (2007). De novo C16- and C24-ceramide generation contributes to spontaneous neutrophil apoptosis. J. Leukoc. Biol. 81, 1477-1486.  https://doi.org/10.1189/jlb.0806529
  47. Sharma, M.D., Rodriguez, P.C., Koehn, B.H., Baban, B., Cui, Y., Guo, G., Shimoda, M., Pacholczyk, R., Shi, H., Lee, E.J., et al. (2018). Activation of p53 in immature myeloid precursor cells controls differentiation into Ly6c(+) CD103(+) monocytic antigen-presenting cells in tumors. Immunity 48, 91-106.e6.  https://doi.org/10.1016/j.immuni.2017.12.014
  48. Siu, J.H.Y., Surendrakumar, V., Richards, J.A., and Pettigrew, G.J. (2018). T cell allorecognition pathways in solid organ transplantation. Front. Immunol. 9, 2548. 
  49. Sofi, M.H., Heinrichs, J., Dany, M., Nguyen, H., Dai, M., Bastian, D., Schutt, S., Wu, Y., Daenthanasanmak, A., Gencer, S., et al. (2017). Ceramide synthesis regulates T cell activity and GVHD development. JCI Insight 2, e91701. 
  50. Sokolowska, E. and Blachnio-Zabielska, A. (2019). The role of ceramides in insulin resistance. Front. Endocrinol. (Lausanne) 10, 577. 
  51. Song, G.W., Lee, S.G., Hwang, S., Kim, K.H., Ahn, C.S., Moon, D.B., Ha, T.Y., Jung, D.H., Park, G.C., Kang, S.H., et al. (2014). Biliary stricture is the only concern in ABO-incompatible adult living donor liver transplantation in the rituximab era. J. Hepatol. 61, 575-582.  https://doi.org/10.1016/j.jhep.2014.04.039
  52. Taylor, D.O., Edwards, L.B., Boucek, M.M., Trulock, E.P., Waltz, D.A., Keck, B.M., and Hertz, M.I. (2006). Registry of the International Society for Heart and Lung Transplantation: twenty-third official adult heart transplantation report--2006. J. Heart Lung Transplant. 25, 869-879.  https://doi.org/10.1016/j.healun.2006.05.002
  53. Weglarz, T.C., Degen, J.L., and Sandgren, E.P. (2000). Hepatocyte transplantation into diseased mouse liver. Kinetics of parenchymal repopulation and identification of the proliferative capacity of tetraploid and octaploid hepatocytes. Am. J. Pathol. 157, 1963-1974.  https://doi.org/10.1016/S0002-9440(10)64835-3
  54. Xu, J., Casas-Ferreira, A.M., Ma, Y., Sen, A., Kim, M., Proitsi, P., Shkodra, M., Tena, M., Srinivasan, P., Heaton, N., et al. (2015). Lipidomics comparing DCD and DBD liver allografts uncovers lysophospholipids elevated in recipients undergoing early allograft dysfunction. Sci. Rep. 5, 17737. 
  55. Yoo, S. and Ha, S.J. (2016). Generation of tolerogenic dendritic cells and their therapeutic applications. Immune Netw. 16, 52-60.  https://doi.org/10.4110/in.2016.16.1.52
  56. Zelnik, I.D., Kim, J.L., and Futerman, A.H. (2021). The complex tail of circulating sphingolipids in atherosclerosis and cardiovascular disease. J. Lipid Atheroscler. 10, 268-281.  https://doi.org/10.12997/jla.2021.10.3.268
  57. Zhao, X., Chen, J., Ye, L., and Xu, G. (2014). Serum metabolomics study of the acute graft rejection in human renal transplantation based on liquid chromatography-mass spectrometry. J. Proteome Res. 13, 2659-2667.  https://doi.org/10.1021/pr5001048
  58. Zitomer, N.C., Mitchell, T., Voss, K.A., Bondy, G.S., Pruett, S.T., Garnier-Amblard, E.C., Liebeskind, L.S., Park, H., Wang, E., Sullards, M.C., et al. (2009). Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine: a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J. Biol. Chem. 284, 4786-4795.  https://doi.org/10.1074/jbc.M808798200