DOI QR코드

DOI QR Code

Activation of Lysosomal Function Ameliorates Amyloid-β-Induced Tight Junction Disruption in the Retinal Pigment Epithelium

  • Dong Hyun Jo (Department of Anatomy and Cell Biology, Seoul National University College of Medicine) ;
  • Su Hyun Lee (Department of Biochemistry and Molecular Biology, Korea University College of Medicine) ;
  • Minsol Jeon (Department of Biochemistry and Molecular Biology, Korea University College of Medicine) ;
  • Chang Sik Cho (Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital) ;
  • Da-Eun Kim (Department of Biochemistry and Molecular Biology, Korea University College of Medicine) ;
  • Hyunkyung Kim (Department of Biochemistry and Molecular Biology, Korea University College of Medicine) ;
  • Jeong Hun Kim (Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University Hospital)
  • 투고 : 2023.04.07
  • 심사 : 2023.10.17
  • 발행 : 2023.11.30

초록

Accumulation of pathogenic amyloid-β disrupts the tight junction of retinal pigment epithelium (RPE), one of its senescence-like structural alterations. In the clearance of amyloid-β, the autophagy-lysosome pathway plays the crucial role. In this context, mammalian target of rapamycin (mTOR) inhibits the process of autophagy and lysosomal degradation, acting as a potential therapeutic target for age-associated disorders. However, efficacy of targeting mTOR to treat age-related macular degeneration remains largely elusive. Here, we validated the therapeutic efficacy of the mTOR inhibitors, Torin and PP242, in clearing amyloid-β by inducing the autophagy-lysosome pathway in a mouse model with pathogenic amyloid-β with tight junction disruption of RPE, which is evident in dry age-related macular degeneration. High concentration of amyloid-β oligomers induced autophagy-lysosome pathway impairment accompanied by the accumulation of p62 and decreased lysosomal activity in RPE cells. However, Torin and PP242 treatment restored the lysosomal activity via activation of LAMP2 and facilitated the clearance of amyloid-β in vitro and in vivo. Furthermore, clearance of amyloid-β by Torin and PP242 ameliorated the tight junction disruption of RPE in vivo. Overall, our findings suggest mTOR inhibition as a new therapeutic strategy for the restoration of tight junctions in age-related macular degeneration.

키워드

과제정보

This study was supported by the Basic Science Research Program (NRF-2022R1A2C2010940 to H.K. and NRF-2022R1A2C1003768, NRF-2023M3A9I4009901 to D.H.J.), the Creative Materials Discovery Program (NRF-2018M3D1A1058826 to J.H.K.) from the National Research Foundation (NRF) of Korea funded by the Korean government, the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5362111 to J.H.K.), the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN21C0917 to J.H.K.), Kun-hee Lee Child Cancer & Rare Disease Project, Republic of Korea (202200004004 to J.H.K.), Seoul National University Hospital Research Grant (18-2023-0010 to J.H.K.), and the Bio & Medical Technology Program of the NRF funded by the Korean government, MSIP (NRF-2022M3A9E4017127 to J.H.K.).

참고문헌

  1. Apte, R.S. (2021). Age-related macular degeneration. N. Engl. J. Med. 385, 539-547. https://doi.org/10.1056/NEJMcp2102061
  2. Brischetto, C., Mucka, P., Kaergel, E., and Scheidereit, C. (2022). Autophagy limits inflammatory gene expression through targeting of nuclear p65/RelA by LC3 and p62 for lysosomal degradation. BioRxiv, https://doi.org/10.1101/2022.11.02.514846
  3. Cao, L., Wang, H., and Wang, F. (2013). Amyloid-beta-induced matrix metalloproteinase-9 secretion is associated with retinal pigment epithelial barrier disruption. Int. J. Mol. Med. 31, 1105-1112. https://doi.org/10.3892/ijmm.2013.1310
  4. Cheng, Y., Ren, X., Hait, W.N., and Yang, J.M. (2013). Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol. Rev. 65, 1162-1197. https://doi.org/10.1124/pr.112.007120
  5. Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79-87. https://doi.org/10.1038/nrm1552
  6. Eskelinen, E.L., Illert, A.L., Tanaka, Y., Schwarzmann, G., Blanz, J., Von Figura, K., and Saftig, P. (2002). Role of LAMP-2 in lysosome biogenesis and autophagy. Mol. Biol. Cell 13, 3355-3368. https://doi.org/10.1091/mbc.e02-02-0114
  7. Ferrington, D.A., Sinha, D., and Kaarniranta, K. (2016). Defects in retinal pigment epithelial cell proteolysis and the pathology associated with agerelated macular degeneration. Prog. Retin. Eye Res. 51, 69-89. https://doi.org/10.1016/j.preteyeres.2015.09.002
  8. Gensler, G., Clemons, T.E., Domalpally, A., Danis, R.P., Blodi, B., Wells, J., 3rd, Rauser, M., Hoskins, J., Hubbard, G.B., Elman, M.J., et al. (2018). Treatment of geographic atrophy with intravitreal sirolimus: the age-related eye disease study 2 ancillary study. Ophthalmol. Retina 2, 441-450. https://doi.org/10.1016/j.oret.2017.08.015
  9. Gonzalez-Marrero, I., Gimenez-Llort, L., Johanson, C.E., Carmona-Calero, E.M., Castaneyra-Ruiz, L., Brito-Armas, J.M., Castaneyra-Perdomo, A., and Castro-Fuentes, R. (2015). Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer's disease. Front. Cell. Neurosci. 9, 17.
  10. Hyttinen, J.M., Amadio, M., Viiri, J., Pascale, A., Salminen, A., and Kaarniranta, K. (2014). Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res. Rev. 18, 16-28. https://doi.org/10.1016/j.arr.2014.07.002
  11. Hyttinen, J.M., Niittykoski, M., Salminen, A., and Kaarniranta, K. (2013). Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim. Biophys. Acta 1833, 503-510. https://doi.org/10.1016/j.bbamcr.2012.11.018
  12. Isas, J.M., Luibl, V., Johnson, L.V., Kayed, R., Wetzel, R., Glabe, C.G., Langen, R., and Chen, J. (2010). Soluble and mature amyloid fibrils in drusen deposits. Invest. Ophthalmol. Vis. Sci. 51, 1304-1310. https://doi.org/10.1167/iovs.09-4207
  13. Jager, R.D., Mieler, W.F., and Miller, J.W. (2008). Age-related macular degeneration. N. Engl. J. Med. 358, 2606-2617. https://doi.org/10.1056/NEJMra0801537
  14. Jo, D.H., Cho, C.S., Kim, J.H., and Kim, J.H. (2020). Intracellular amyloid-beta disrupts tight junctions of the retinal pigment epithelium via NF-kappaB activation. Neurobiol. Aging 95, 115-122. https://doi.org/10.1016/j.neurobiolaging.2020.07.013
  15. Kim, S., Song, H.S., Yu, J., and Kim, Y.M. (2021). MiT Family transcriptional factors in immune cell functions. Mol. Cells 44, 342-355. https://doi.org/10.14348/molcells.2021.0067
  16. Kim, Y.C. and Guan, K.L. (2015). mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125, 25-32. https://doi.org/10.1172/JCI73939
  17. Maiese, K. (2016). Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br. J. Clin. Pharmacol. 82, 1245-1266. https://doi.org/10.1111/bcp.12804
  18. Mullins, R.F., Russell, S.R., Anderson, D.H., and Hageman, G.S. (2000). Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14, 835-846. https://doi.org/10.1096/fasebj.14.7.835
  19. Nixon, R.A. (2007). Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 120, 4081-4091. https://doi.org/10.1242/jcs.019265
  20. Notomi, S., Ishihara, K., Efstathiou, N.E., Lee, J.J., Hisatomi, T., Tachibana, T., Konstantinou, E.K., Ueta, T., Murakami, Y., Maidana, D.E., et al. (2019). Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. Proc. Natl. Acad. Sci. U. S. A. 116, 23724-23734. https://doi.org/10.1073/pnas.1906643116
  21. Pan, T., Kondo, S., Le, W., and Jankovic, J. (2008). The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131, 1969-1978. https://doi.org/10.1093/brain/awm318
  22. Park, J.W., Jeong, J., and Bae, Y.S. (2022). Protein kinase CK2 is upregulated by calorie restriction and induces autophagy. Mol. Cells 45, 112-121. https://doi.org/10.14348/molcells.2021.0183
  23. Park, S.W., Im, S., Jun, H.O., Lee, K., Park, Y.J., Kim, J.H., Park, W.J., Lee, Y.H., and Kim, J.H. (2017). Dry age-related macular degeneration like pathology in aged 5XFAD mice: ultrastructure and microarray analysis. Oncotarget 8, 40006-40018. https://doi.org/10.18632/oncotarget.16967
  24. Park, S.W., Kim, J.H., Mook-Jung, I., Kim, K.W., Park, W.J., Park, K.H., and Kim, J.H. (2014). Intracellular amyloid beta alters the tight junction of retinal pigment epithelium in 5XFAD mice. Neurobiol. Aging 35, 2013-2020. https://doi.org/10.1016/j.neurobiolaging.2014.03.008
  25. Park, S.W., Kim, J.H., Park, S.M., Moon, M., Lee, K.H., Park, K.H., Park, W.J., and Kim, J.H. (2015). RAGE mediated intracellular Abeta uptake contributes to the breakdown of tight junction in retinal pigment epithelium. Oncotarget 6, 35263-35273. https://doi.org/10.18632/oncotarget.5894
  26. Petrou, P.A., Cunningham, D., Shimel, K., Harrington, M., Hammel, K., Cukras, C.A., Ferris, F.L., Chew, E.Y., and Wong, W.T. (2014). Intravitreal sirolimus for the treatment of geographic atrophy: results of a phase I/II clinical trial. Invest. Ophthalmol. Vis. Sci. 56, 330-338. https://doi.org/10.1167/iovs.14-15877
  27. Roczniak-Ferguson, A., Petit, C.S., Froehlich, F., Qian, S., Ky, J., Angarola, B., Walther, T.C., and Ferguson, S.M. (2012). The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42.
  28. Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 53, 167-178. https://doi.org/10.1016/j.molcel.2013.12.014
  29. Schorderet, D.F., Cottet, S., Lobrinus, J.A., Borruat, F.X., Balmer, A., and Munier, F.L. (2007). Retinopathy in Danon disease. Arch. Ophthalmol. 125, 231-236. https://doi.org/10.1001/archopht.125.2.231
  30. Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433. https://doi.org/10.1126/science.1204592
  31. Shaw, P.X., Stiles, T., Douglas, C., Ho, D., Fan, W., Du, H., and Xiao, X. (2016). Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol. Sci. 3, 196-221. https://doi.org/10.3934/molsci.2016.2.196
  32. Shen, H.M. and Mizushima, N. (2014). At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 39, 61-71. https://doi.org/10.1016/j.tibs.2013.12.001
  33. Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E.L., Hartmann, D., Lullmann-Rauch, R., Janssen, P.M., Blanz, J., von Figura, K., and Saftig, P. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902-906. https://doi.org/10.1038/35022595
  34. Tanokashira, D., Mamada, N., Yamamoto, F., Taniguchi, K., Tamaoka, A., Lakshmana, M.K., and Araki, W. (2017). The neurotoxicity of amyloid beta-protein oligomers is reversible in a primary neuron model. Mol. Brain 10, 4.
  35. Thiadens, A.A., Slingerland, N.W., Florijn, R.J., Visser, G.H., Riemslag, F.C., and Klaver, C.C. (2012). Cone-rod dystrophy can be a manifestation of Danon disease. Graefes Arch. Clin. Exp. Ophthalmol. 250, 769-774. https://doi.org/10.1007/s00417-011-1857-8
  36. Wang, J., Ohno-Matsui, K., Yoshida, T., Kojima, A., Shimada, N., Nakahama, K., Safranova, O., Iwata, N., Saido, T.C., Mochizuki, M., et al. (2008). Altered function of factor I caused by amyloid beta: implication for pathogenesis of age-related macular degeneration from Drusen. J. Immunol. 181, 712-720. https://doi.org/10.4049/jimmunol.181.1.712
  37. Wani, A., Gupta, M., Ahmad, M., Shah, A.M., Ahsan, A.U., Qazi, P.H., Malik, F., Singh, G., Sharma, P.R., Kaddoumi, A., et al. (2019). Alborixin clears amyloid-beta by inducing autophagy through PTEN-mediated inhibition of the AKT pathway. Autophagy 15, 1810-1828. https://doi.org/10.1080/15548627.2019.1596476
  38. Wen, Z., Zhang, J., Tang, P., Tu, N., Wang, K., and Wu, G. (2018). Overexpression of miR185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson's disease. Mol. Med. Rep. 17, 131-137.
  39. Yoshii, S.R. and Mizushima, N. (2017). Monitoring and measuring autophagy. Int. J. Mol. Sci. 18, 1865.
  40. Yu, L., McPhee, C.K., Zheng, L., Mardones, G.A., Rong, Y., Peng, J., Mi, N., Zhao, Y., Liu, Z., Wan, F., et al. (2010). Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942-946. https://doi.org/10.1038/nature09076
  41. Zeng, Q., Siu, W., Li, L., Jin, Y., Liang, S., Cao, M., Ma, M., and Wu, Z. (2019). Autophagy in Alzheimer's disease and promising modulatory effects of herbal medicine. Exp. Gerontol. 119, 100-110. https://doi.org/10.1016/j.exger.2019.01.027
  42. Zhou, J., Tan, S.H., Nicolas, V., Bauvy, C., Yang, N.D., Zhang, J., Xue, Y., Codogno, P., and Shen, H.M. (2013). Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosomelysosome fusion. Cell Res. 23, 508-523. https://doi.org/10.1038/cr.2013.11
  43. Ziegler-Waldkirch, S., d'Errico, P., Sauer, J.F., Erny, D., Savanthrapadian, S., Loreth, D., Katzmarski, N., Blank, T., Bartos, M., Prinz, M., et al. (2018). Seed-induced Abeta deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO J. 37, 167-182. https://doi.org/10.15252/embj.201797021
  44. Zuroff, L., Daley, D., Black, K.L., and Koronyo-Hamaoui, M. (2017). Clearance of cerebral Abeta in Alzheimer's disease: reassessing the role of microglia and monocytes. Cell. Mol. Life Sci. 74, 2167-2201. https://doi.org/10.1007/s00018-017-2463-7