DOI QR코드

DOI QR Code

Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis

  • Zhenjie, Zhuang (Guangzhou University of Chinese Medicine) ;
  • Qianying, Chen (Guangzhou University of Chinese Medicine) ;
  • Xiaoying, Zhong (Guangzhou University of Chinese Medicine) ;
  • Huiqi, Chen (Guangzhou University of Chinese Medicine) ;
  • Runjia, Yu (Guangzhou University of Chinese Medicine) ;
  • Ying, Tang (Science and Technology Innovation Center, Guangzhou University of Chinese Medicine)
  • 투고 : 2022.04.27
  • 심사 : 2022.09.27
  • 발행 : 2023.03.02

초록

Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

키워드

과제정보

We thank Dr. Jianming Zeng (University of Macau) and all the members of his bioinformatics team for generously sharing their experience and codes. The Use of the biorstudio high performance computing cluster (https://biorstudio.cloud) at Biotrainee and The Shanghai HS Biotech Co.,Ltd for conducting the research was reported in this paper.

참고문헌

  1. Worldometer. COVID-19 CORONAVIRUS PANDEMIC. https://www.worldometers.info/coronavirus/. [Accessed 18 August 2022]. 
  2. Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z, Zhang Z, You H, Wu M, Zheng Q, et al. Patients with cancer appear more vulnerable to SARS-CoV-2: a multicenter study during the COVID-19 outbreak. Cancer Discovery 2020;10(6):783-91.  https://doi.org/10.1158/2159-8290.cd-20-0422
  3. Yang K, Sheng Y, Huang C, Jin Y, Xiong N, Jiang K, Lu H, Liu J, Yang J, Dong Y, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. The Lancet Oncology 2020;21(7):904-13.  https://doi.org/10.1016/s1470-2045(20)30310-7
  4. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, Li C, Ai Q, Lu W, Liang H, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. The Lancet Oncology 2020;21(3):335-7.  https://doi.org/10.1016/s1470-2045(20)30096-6
  5. Addeo A, Obeid M, Friedlaender A. COVID-19 and Lung Cancer: Risks, Mechanisms and Treatment Interactions. Journal for Immunotherapy of Cancer 2020;8(1):e000892. 
  6. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 novel Coronavirus (COVID-19) pneumonia in two patients with lung cancer. Journal of thoracic oncology. Official Publication of the International Association for the Study of Lung Cancer 2020;15(5):700-4.  https://doi.org/10.1016/j.jtho.2020.02.010
  7. Malkani N, Rashid MU. SARS-COV-2 infection and lung tumor microenvironment. Mol Biol Rep 2021;48(2):1925-34.  https://doi.org/10.1007/s11033-021-06149-8
  8. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. Journal of Ginseng Research 2018;42(2):123-32.  https://doi.org/10.1016/j.jgr.2017.01.008
  9. Xu Y, Peng W, Han D, Wang Z, Gu C, Feng F, et al. Combined treatment of non-small-cell lung cancer using Shenyi capsule and platinum-based chemotherapy: a meta-analysis and systematic review. Evidence-Based complementary and alternative medicine 2020;2020:3957193. 
  10. Lu P, Su W, Miao ZH, Niu HR, Liu J, Hua QL. Effect and mechanism of ginsenoside Rg3 on postoperative life span of patients with non-small cell lung cancer. Chinese Journal of Integrative Medicine 2008;14(1):33-6.  https://doi.org/10.1007/s11655-007-9002
  11. Guo XW, Hu ND, Sun GZ, Li M, Zhang PT. Shenyi capsule plus chemotherapy versus chemotherapy for non-small cell lung cancer: a systematic review of overlapping meta-analyses. Chinese Journal of Integrative Medicine 2018;24(3):227-31.  https://doi.org/10.1007/s11655-017-2951-5
  12. Liu T, Duo L, Duan P. Ginsenoside Rg3 sensitizes colorectal cancer to radiotherapy through downregulation of proliferative and angiogenic biomarkers. Evidence-Based complementary and alternative medicine 2018;2018:1580427. 
  13. Park YJ, Cho M, Choi G, Na H, Chung Y. A critical regulation of Th17 cell responses and autoimmune neuro-inflammation by ginsenoside Rg3. Biomolecules 2020;10(1):122. 
  14. Cho M, Choi G, Shim I, Chung Y. Enhanced Rg3 negatively regulates Th1 cell responses. Journal of Ginseng Research 2019;43(1):49-57.  https://doi.org/10.1016/j.jgr.2017.08.003
  15. Zhang D, Hamdoun S, Chen R, Yang L, Ip CK, Qu Y, Li R, Jiang H, Yang Z, Chung SK, et al. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacological Research 2021;172:105820. 
  16. Goh HH. Integrative multi-omics through bioinformatics. Advances in Experimental Medicine and Biology 2018;1102:69-80.  https://doi.org/10.1007/978-3-319-98758-3_5
  17. Daamen AR, Bachali P, Owen KA, Kingsmore KM, Hubbard EL, Labonte AC, Robl R, Shrotri S, Grammer AC, Lipsky PE. Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway. Scientific Reports 2021;11(1):7052. 
  18. Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, Meyer JG, Quan Q, Muehlbauer LK, Trujillo EA, et al. Large-scale multi-omic analysis of COVID-19 severity. Cell Systems 2021;12(1):23-40. e7.  https://doi.org/10.1016/j.cels.2020.10.003
  19. Vono M, Huttner A, Lemeille S, Martinez-Murillo P, Meyer B, Baggio S, Sharma S, Thiriard A, Marchant A, Godeke GJ, et al. Robust innate responses to SARS-CoV-2 in children resolve faster than in adults without compromising adaptive immunity. Cell Reports 2021;37(1):109773. 
  20. Zhuang Z, Zhong X, Chen Q, Chen H, Liu Z. Bioinformatics and system Biology approach to reveal the interaction network and the therapeutic implications for non-small cell lung cancer patients With COVID-19. Front. Pharmacol. 2022;13:857730. 
  21. Kassambara A, Kosinski M, Biecek P. survminer: Survival Analysis and Visualization. http://www.sthda.com/english/rpkgs/survminer/. [Accessed 21 October 2021]. 
  22. Carithers LJ, Moore HM. The genotype-tissue expression (GTEx) Project. Biopreservation and Biobanking 2015;13(5):307-8.  https://doi.org/10.1089/bio.2015.29031.hmm
  23. Goldman M, Craft B, Brooks A, Zhu J, Haussler D. The UCSC Xena Platform for cancer genomics data visualization and interpretation. 2018. p. 326470. 
  24. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine DA, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications 2013;4:2612. 
  25. Schrodinger L. The PyMOL molecular graphics system. New York: version 2.0;2017. 
  26. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 2010;31(2):455-61.  https://doi.org/10.1002/jcc.21334
  27. Liu Z, Liu T, Li W, Li J, Wang C, Zhang K. Insights into the antitumor mechanism of ginsenosides Rg3. Molecular Biology Reports 2021;48(3):2639-52.  https://doi.org/10.1007/s11033-021-06187-2
  28. Yang J, Li S, Wang L, Du F, Zhou X, Song Q, Zhao J, Fang R. Ginsenoside Rg3 attenuates lipopolysaccharide-induced acute lung injury via MerTK-dependent activation of the PI3K/AKT/mTOR pathway. Frontiers in Pharmacology 2018;9:850. 
  29. Park D, Bae DK, Jeon JH, Lee J, Oh N, Yang G, Yang YH, Kim TK, Song J, Lee SH, et al. Immunopotentiation and antitumor effects of a ginsenoside Rg3-fortified red ginseng preparation in mice bearing H460 lung cancer cells. Environmental Toxicology and Pharmacology 2011;31(3):397-405.  https://doi.org/10.1016/j.etap.2011.01.008
  30. Kee JY, Hong SH. Ginsenoside Rg3 suppresses mast cell-mediated allergic inflammation via mitogen-activated protein kinase signaling pathway. Journal of Ginseng Research 2019;43(2):282-90.  https://doi.org/10.1016/j.jgr.2018.02.008
  31. Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P, et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct Target Ther 2020;5(1):57. 
  32. Lu X, Chen T, Wang Y, Wang J, Fjcc Yan. Adjuvant corticosteroid therapy for critically ill patients with COVID-19. Crit Care 2020;24(1):241. 
  33. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, Malaponte G, Nicoletti F, Libra M, Basecke J, et al. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. Journal of Cellular Physiology 2011;226(11):2762-81.  https://doi.org/10.1002/jcp.22647
  34. Kurgan N, Tsakiridis E, Kouvelioti R, Moore J, Klentrou P, Tsiani E. Inhibition of Human Lung Cancer Cell Proliferation and Survival by Post-Exercise Serum Is Associated with the Inhibition of Akt, mTOR, p70 S6K, and Erk1/2. Cancers 2017;9(5):46. 
  35. Heigener DF, Gandara DR, Reck M. Targeting of MEK in lung cancer therapeutics. The Lancet Respiratory Medicine 2015;3(4):319-27.  https://doi.org/10.1016/S2213-2600(15)00026-0
  36. Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA, Villar-Cheda B, Rodriguez-Perez AI. The intracellular renin-angiotensin system: Friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 2021;199:101919. 
  37. Bian J, Li Z. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharmaceutica Sinica B 2021;11(1):1-12.  https://doi.org/10.1016/j.apsb.2020.10.006
  38. Ma S, Li H, Yang J, Yu K. Molecular simulation studies of the interactions between the human/pangolin/cat/bat ACE2 and the receptor binding domain of the SARS-CoV-2 spike protein. Biochimie 2021;187:1-13.  https://doi.org/10.1016/j.biochi.2021.05.001
  39. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Feng C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences 2020;63(3):364-74.  https://doi.org/10.1007/s11427-020-1643-8
  40. Sahni A, Simpson-Haidaris PJ, Sahni SK, Vaday GG, Francis CW. Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2). J Thromb Haemost 2008;6(1):176-83.  https://doi.org/10.1111/j.1538-7836.2007.02808.x
  41. Iba T, Levy JH, Levi M, Connors JM, Thachil J. Coagulopathy of Coronavirus disease 2019. Critical Care Medicine 2020;48(9):1358-64.  https://doi.org/10.1097/CCM.0000000000004458
  42. Varela AA, Cheng S, Werren JH. Novel ACE2 protein interactions relevant to COVID-19 predicted by evolutionary rate correlations. PeerJ 2021;9:e12159. 
  43. Sur S, Khatun M, Steele R, Isbell TS, Ray R, Ray RB. Exosomes from COVID-19 patients carry tenascin-C and fibrinogen-β in triggering inflammatory signals in cells of distant organ. International Journal of Molecular Sciences 2021;22(6):3184. 
  44. Cao Y, Zhu W, Chen W, Wu J, Hou G, Li Y. Prognostic value of BIRC5 in lung adenocarcinoma lacking EGFR, KRAS, and ALK mutations by integrated bioinformatics analysis. Disease Markers 2019;2019:5451290. 
  45. Derin D, Soydinc HO, Guney N, Tas F, Camlica H, Duranyildiz D, Yasasever V, Topuz E. Serum levels of apoptosis biomarkers, survivin and TNF-alpha in nonsmall cell lung cancer. Lung Cancer 2008;59(2):240-5.  https://doi.org/10.1016/j.lungcan.2007.08.005
  46. Shang X, Liu G, Zhang Y, Tang P, Zhang H, Jiang H, Yu Z. Downregulation of BIRC5 inhibits the migration and invasion of esophageal cancer cells by interacting with the PI3K/Akt signaling pathway. Oncology Letters 2018;16(3):3373-9.  https://doi.org/10.3892/ol.2018.8986
  47. Wang B, Li X, Zhao G, Yan H, Dong P, Watari H, et al. miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway. J Exp Clin Cancer Res 2018;37(1):235. 
  48. Yang CT, Li JM, Li LF, Ko YS, Chen JT. Stomatin-like protein 2 regulates survivin expression in non-small cell lung cancer cells through β-catenin signaling pathway. Cell Death & Disease 2018;9(4):425. 
  49. Wang X, Zheng YL, Li K, Lin N, Fan QX. [Ginsenoside Rg3 induces apoptosis of human lung squamous cell carcinoma SK-MES-1 cell line]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 2009;29(9):1823-6. 
  50. Supuran CT, Alterio V, Di Fiore A. K DA, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Medicinal Research Reviews 2018;38(6):1799-836.  https://doi.org/10.1002/med.21497
  51. Giatromanolaki A, Harris AL, Banham AH, Contrafouris CA, Koukourakis MI. Carbonic anhydrase 9 (CA9) expression in non-small-cell lung cancer: correlation with regulatory FOXP3+T-cell tumour stroma infiltration. British Journal of Cancer 2020;122(8):1205-10.  https://doi.org/10.1038/s41416-020-0756-3
  52. Herr C, Mang S, Mozafari B, Guenther K, Speer T, Seibert M, Srikakulam SK, Beisswenger C, Ritzmann F, Keller A, et al. Distinct patterns of blood cytokines beyond a cytokine storm predict mortality in COVID-19. J Inflamm Res 2021;14:4651-67.  https://doi.org/10.2147/JIR.S320685
  53. Danta CC. SARS-CoV-2, hypoxia, and calcium signaling: the consequences and therapeutic options. ACS Pharmacology & Translational Science 2021;4(1):400-2.  https://doi.org/10.1021/acsptsci.0c00219
  54. Dong J, Olaleye OE, Jiang R, Li J, Lu C, Du F, Xu F, Yang J, Wang F, Jia W, et al. Glycyrrhizin has a high likelihood to be a victim of drug-drug interactions mediated by hepatic organic anion-transporting polypeptide 1B1/1B3. British Journal of Pharmacology 2018;175(17):3486-503.  https://doi.org/10.1111/bph.14393
  55. Takane H, Miyata M, Burioka N, Kurai J, Fukuoka Y, Suyama H, Shigeoka Y, Otsubo K, Ieiri I, Shimizu E. Severe toxicities after irinotecan-based chemotherapy in a patient with lung cancer: a homozygote for the SLCO1B1*15 SLCO1B1*15  SLCO1B1*15 allele. Therapeutic Drug Monitoring 2007;29(5):666-8.  https://doi.org/10.1097/FTD.0b013e3181357364
  56. Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ Genomic Medicine 2020;5:35. 
  57. Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019;19(1):9-31.  https://doi.org/10.1038/s41568-018-0081-9
  58. Chen W, Li Z, Bai L, Lin Y. NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Frontiers in Bioscience (Landmark Edition) 2011;16(3):1172-85.  https://doi.org/10.2741/3782
  59. Liu Y, Luo F, Xu Y, Wang B, Zhao Y, Xu W, Shi L, Lu X, Liu Q. Epithelialmesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract. Toxicology and Applied Pharmacology 2015;282(1):9-19.  https://doi.org/10.1016/j.taap.2014.10.022
  60. Moujaess E, Kourie HR, Ghosn M. Cancer patients and research during COVID-19 pandemic: a systematic review of current evidence. Critical Reviews in Oncology/hematology 2020;150:102972.