DOI QR코드

DOI QR Code

Pytotoxicity by Continuous Spraying of Fruit Fire Blight Disinfectant During Growing Season of Apple and Pear

과수 화상병 방제약제의 사과·배 생육기 연용 살포에 의한 약해

  • Se Hee, Kim (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Song-Hee, Ryu (Residual Chemical Assessment Division, National Institute of Agricultural Science) ;
  • Byeonghyeon, Yun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Kang Hee, Cho (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Sang-Yun, Cho (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Jung Gwan, Park (Research Institute of Climate Change and Agriculture, National Institute of Horticultural & Herbal Science)
  • 김세희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 류송희 (농촌진흥청 국립농업과학원 잔류화학평가과) ;
  • 윤병현 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조강희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조상윤 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 박정관 (농촌진흥청 국립원예특작과학원 온난화대응농업연구)
  • Received : 2022.08.18
  • Accepted : 2022.10.14
  • Published : 2023.02.01

Abstract

In order to control the fire blight disease, all plants within the radius of the diseased orchard were removed in the early stage of the outbreak, or antibiotics control was performed for prevention. Since the beginning of antibiotics use on plants, the potential for development of resistance to antibiotics by the plant pathogen and unintended detrimental effects on the fruit trees and environment has become a problem. The purpose of this study is to determine the degree of phytotoxicity to fruit trees caused by excessive spraying of the fire blight disease disinfectant and to establish basic data for safe disinfectant guide. We analyzed whether damage to the fruit tree and the maximum residual limit of fruit was exceeded when three kinds of the fire blight disease disinfectants were continuously sprayed in excess of the number of safe use during the growing season. There was no phytotoxicity in apple 'Fuji' and pear 'Niitaka', and oxolinic acid was detected beyond the limit of quantitation in 'Fuji' grown without a bag, and the other disinfectants were detected below the maximum residue limit. When these disinfectants are continuously sprayed in excess of the number of safe, phytotoxicity may remain on the fruit. Therefore, it is necessary to observe the prescribed dilution factor and observe the safe frequency and the timing of use.

과수 화상병을 방제하기 위해 발병 초기에 과수원 반경 내 전체 식물을 제거하거나 예방을 위해 약제 방제를 시행하고 있다. 과수에 대한 항생제 사용이 시작된 이후, 항생제 저항성 병원균 발생 가능성과 의도하지 않은 수체 및환경에 대한 해로운 영향이 문제가 되고 있다. 본 연구의 목적은 화상병 방제약제 과다 살포로 인한 과수의 피해 정도를 확인하고, 안전한 약제 방제 기준을 설정하기 위해 수행하였다. 과수 생육기 동안 안전 사용 횟수를 초과하여 3종의 과수 화상병 방제약제를 지속해서 살포하 였을 때 발생하는 약해와 처리한 과실에서 약제 잔류허용기준 초과 여부를 분석하였다. 사과 '후지'와 배 '신고'에서 약해는 보이지 않았고, 무대재배를 한 '후지'에서 oxolinic acid가 정량한계를 넘어서 검출되었고, 나머지 약제 성분은 잔류허용기준 이하로 검출되었다. 안전 사용 횟수를 초과하여 방제약제를 사용하게 되면 약제 성분이 과실에 남을 수 있으므로 정해진 희석배수를 지키고 안전 사용 횟수와 함께 사용 적기를 반드시 준수해야 함을 알 수 있다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구과제(세부과제번호: PJ01530103)의 지원으로 이루어진 것임.

References

  1. Billing, E. 2011. Fire blight. Why do views on host invasion by Erwinia amylovora differ? Plant Pathol. 60:178-189. https://doi.org/10.1111/j.1365-3059.2010.02382.x
  2. Codex Alimentarius Commission. 2003. Guidelines on good laboratory practice in residue analysis. CAC/GL 40-1993, Rome Italy. p. 24.
  3. Drenova, N.V., M.M. Isin, A.A. Dzhaimurzina, G.A. Zharmukhamedova and A.K. Aitkulov. 2012. Bacterial fire blight in the Republic of Kazakhstan. Plant Health Research and Practice 1:44-48.
  4. Fatmi, M., M. Bougsiba and H. Saoud. 2008. First report of fire blight caused by Erwinia amylovora on pear, apple and quince in Morocco. Plant Dis. 92:314.
  5. Gusberti, M., U. Klemm, M.S. Meier, M. Maurhofer and I. Hunger-Glaser. 2015. Fire blight control: the struggle goes on. A comparison of different fire blight control methods in Switzerland with respect to bio safety, efficacy and durability. Int. J. Environ. Res. Public Health 12:11422-11447. https://doi.org/10.3390/ijerph120911422
  6. Ham, H.-H., K.J. Lee, S.J. Hong, H.G. Kong, M.-H. Lee, H.-R. Kim and Y.H. Lee. 2020. Outbreak of fire blight of apple and pear and itx characteristics in Korea in 2019. Res. Plant Dis. 26(4):239-249. https://doi.org/10.5423/RPD.2020.26.4.239
  7. Hyun, J.-W., H.-J. Kim, P.-H. Yi, R.-Y. Hwang and E.-W. Park. 2012. Mode of action of streptomycin resistance in the citrus canker pathogen (Xanthomonas smithii subsp. citri). Plant Pathol. J. 28:207-211. https://doi.org/10.5423/PPJ.2012.28.2.207
  8. Jamar, L. and M. Lateur. 2007. Strategies to reduce copper use in organic apple production. Acta Hortic. 737:113-120. https://doi.org/10.17660/actahortic.2007.737.14
  9. Jeong, I.-H., G.-S. Lee, B.-Y. Seo, B.-Y. Park, J.-R. Cho, T.H. Kwon, B.-H. Lee and C.G. Park. 2020. Phytotoxic damage of fumigant, ethyl formate to vegetable crops and Solanaceae plants by different temperature and humidity conditions. Korean J. Pestic. Sci. 24(4): 403-409. https://doi.org/10.7585/kjps.2020.24.4.403
  10. Johnson, K.B. and V.O. Stockwell. 1998. Management of fire blight: a case study in microbial ecology. Annu. Rev. Phytopathol. 36:227-248. https://doi.org/10.1146/annurev.phyto.36.1.227
  11. Kim, B.S., C.G. Park, Y.M. Moon, B.K. Sung, Y. Ren, S.J. Wylie and B.H. Lee. 2016. Quarantime treatments of imported nursery plants and exported cut flowers by phosphine gas (PH3) as methyl bromide alternative. J. Econ. Entomol. 109(6):2334-2340. https://doi.org/10.1093/jee/tow200
  12. Kim, M.J., I.J. Kim, S.Y. Nam, H.J. Kang, C.H. Lee and B.H. Song. 2002. Screening of fungicides for the control of Colletotrichum acutatum in Carthamus tintorious L.. Korean J. Plant Res. 15(3):211-215.
  13. Lee, M.S., I.G. Lee, S.G. Kim, C.S. Oh and D.H. Park. 2018. In vitro screening of antibacterial agents for suppression of fire blight disease in Korea. Plant Dis. 24(1):41-51. https://doi.org/10.5423/RPD.2018.24.1.41
  14. Lee, Y.K. 2021. Response of 9 pesticide against fire blight disease in pear and apple trees. Korean J. Pestic.Sci. 1:205.
  15. McGhee, G.C., J. Guasco, L.M. Bellomo, S.E. Blumer-Schuette, W.W. Shane, A. Irish-Brown and G.W. Sundin. 2011. Genetic analysis of streptomycin-resistant (SmR) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of SmR E.amylovora in Michigan. Phytopathology 101:192-204. https://doi.org/10.1094/PHYTO-04-10-0128
  16. McManus, P.S., V.O. Stockwell, G.W. Sundin and A.L. Jones. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40(1):443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  17. Myung, I.-S., J.-Y. Lee, M.-J. Yun, Y.-H. Lee and D.-H. Park. 2016. Fire blight of apple, caused by Erwinia amylovora, a new disease in Korea. Plant Dis. 100:1774.
  18. Park, D.H., J.-G. Yu, E.-J. Oh, K.-S. Han, M.C. Yea and S.J. Lee. 2016. First report of fire blight disease on Asian pear caused by Erwinia amylovora in Korea. Plant Dis. 100:1946.
  19. Park, D.H., Y.-G. Lee, J.-S. Kim, J.-S. Cha and C.-S. Oh. 2017. Current status of fire blight caused by Erwinia amylovora and action for its manatement in Korea. J. Plant Pathol. 99:59-63. https://doi.org/10.4454/jpp.v99i0.3918
  20. Park, S.Y., H.S. Han, Y.S. Lee, Y.J. Koh and J.S. Jung. 2007. Streptomycin resistant gene of Pseudomonas syringae pv. syringae, the causal agent of bacterial blossom blight of kiwifruit. Res. Plant Dis. 13:88-92. https://doi.org/10.5423/RPD.2007.13.2.088
  21. Park, W. 2020. Principles for managing pesticide resistance. Agrochemical News Magazine 258:38-40 (in Korean).
  22. Russo, N.L., T.J. Burr, D.I. Breth and H.S. Aldwinckle. 2008. Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant Dis. 92:714-718. https://doi.org/10.1094/pdis-92-5-0714
  23. Sholberg, P.L., K.E. Bedford, P. Haag and P. Randall. 2001. Survey of Erwinia amylovora isolates from British Columbia for resistance to bactericides and virulence on apple. Can. J. Plant Pathol. 23(1):60-67. https://doi.org/10.1080/07060660109506910
  24. Stockwell, V.O., T.N. Temple, J.E. Loper and K.B. Johnson. 2008. Integrated control of fire blight with antagonists and oxytetracycline. Acta Hortic. 793:383-390. https://doi.org/10.17660/actahortic.2008.793.57
  25. Sundin, G.W., N.A. Wermer, K.S. Yoder and H.S. Aldwinckle. 2009. Field evaluation of biological control of fire blight in the Eastern United States. Plant Dis. 93:386-394. https://doi.org/10.1094/pdis-93-4-0386
  26. Tancos, K.A. and K.D. Cox. 2016. Exploring diversity and origins of streptomycin-regisistant Erwinia amylovora isolates in New York through CRISPR spacer arrays. Plant Dis. 100:1307-1313. https://doi.org/10.1094/PDIS-01-16-0088-RE
  27. Tancos, K.A. and K.D. Cox. 2017. Effects of consecutive streptomycin and kasugamycin applications on epiphytic bacteria in the apple phyllosphere. Plant Dis. 101:158-164. https://doi.org/10.1094/pdis-06-16-0794-re
  28. Tancos, K.A., S.M. Villani, E. Borejsza-Wysocka, S. Kuehne, D. Breth, and K.D. Cox. 2016. Exploring diversity and origins of streptomycin-regisistant Erwinia amylovora isolates in New York through CRISPR spacer arrays. Plant Dis. 100: 1307-1313. https://doi.org/10.1094/PDIS-01-16-0088-RE