DOI QR코드

DOI QR Code

Inhibitory Activity of Wild-Simulated Ginseng against Non-Alcoholic Fatty Liver Disease in HepG-2 Cells

산양삼(Wild-Simulated Ginseng)의 비알코올성 지방간 억제활성

  • So Jung, Park (Department of Medicinal Plant Resources, Andong National University) ;
  • Yurry, Um (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Min Yeong, Choi (Department of Medicinal Plant Resources, Andong National University) ;
  • Jin Boo, Jeong (Department of Medicinal Plant Resources, Andong National University)
  • 박소정 (국립안동대학교 생약자원학과) ;
  • 엄유리 (국립산림과학원 산림약용자원연구소) ;
  • 최민영 (국립안동대학교 생약자원학과) ;
  • 정진부 (국립안동대학교 생약자원학과)
  • Received : 2022.11.01
  • Accepted : 2023.01.02
  • Published : 2023.02.01

Abstract

In this study, we investigated in vitro inhibitory activity of wild-simulated ginseng (WSG) against non-alcoholic fatty liver disease using HepG-2 cells. T0901317 treatment increased the lipid accumulation in HepG-2 cells, but WSG treatment inhibited T0901317-mediated lipid accumulation. In addition, WSG downregulated T0901317-mediated expression of SREBP-1c, ACC, FAS and SCD-1 protein. In addition, WSG increased the phosphorylation level of LKB1 and AMPK. Compound C treatment blocked WSG-mediated downregulation of SREBP-1c protein. In conclusion, WSG is considered to inhibit the accumulation of lipids and triglycerides in HepG-2 cells by inducing the activation of LKB1 and AMPK successively, thereby reducing the expression of FAS, ACC, and SCD-1 through suppression of SREBP-1c expression.

간세포 내 LXRα활성화는 전사조절인자인 SREBP-1c의 발현을 증가시키고, 발현된 SREBP-1c는 핵내로 이동하여 지질형성 관련 유전자인 FAS, ACC, SCD-1 등의 프로모토에 결합하여 FAS, ACC, SCD-1을 유도하여 중성지질의 합성을 활성화시켜 비알코올성 지방간을 초래한다. 그러나 산양삼은 LKB1 그리고 연속적으로 AMPK의 활성화을 유도하여 SREBP-1c의 발현 억제를 통해 FAS, ACC, SCD-1의 발현을 감소시켜 간세포 내 지질 및 중성지질의 축적을 억제하는 것으로 판단된다. 본 결과를 미루어 볼 때, 산양삼은 비알코올성 지방간을 예방하기 위한 건강기능성 식품소재로 개발로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

This work was supported by the research project of National Institute of Forest Science (NIFoS) [grant number: FP0802-2022-03] and by R&D Program for Forest Science Technology [Project No. 2021377C10-2123-BD02] provided by Korea Forest Service (Korea Forestry Promotion Institute).

References

  1. Bacanli, M., S.A. Dilsiz, N. Basaran and A.A. Basaran. 2019. Effects of phytochemicals against diabetes. Adv. Food Nutr. Res. 89:209-238. https://doi.org/10.1016/bs.afnr.2019.02.006
  2. Bartlett, K. and S. Eaton. 2004. Mitochondrial beta-oxidation. Eur. J. Biochem. 271:462-469. https://doi.org/10.1046/j.1432-1033.2003.03947.x
  3. Clark, J.M. 2006. The epidemiology of nonalcoholic fatty liver disease in adults. J. Clin. Gastroenterol. 40(1):S5-S10. https://doi.org/10.1097/00004836-200603001-00003
  4. Dujic, T., A. Causevic, T. Bego, M. Malenica, Z. Velija-Asimi, E.R. Pearson and S. Semiz. 2016. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with type 2 diabetes. Diabet. Med. 33:511-514. https://doi.org/10.1111/dme.13040
  5. Goyal, A., H. Arora and S. Arora. 2020. Prevalence of fatty liver in metabolic syndrome. J. Family Med. Prim. Care 9:3246-3250. https://doi.org/10.4103/jfmpc.jfmpc_1108_19
  6. Im, H.J., Y.C. Ahn, J.H. Wang, M.M. Lee and C.G. Son. 2021. Systematic review on the prevalence of nonalcoholic fatty liver disease in South Korea. Clin. Res. Hepatol. Gastroenterol. 45(4):101526.
  7. Jung, J.I., J.M. Kim, H.S. Kim, H.S. Kim and E.J. Kim. 2019. Immunostimulatory effect of wild-cultivated ginseng extract via the increase in phygocytosis and cytokine secretions in RAW 264.7 macrophages. J. Korean Soc. Food Sci. Nutr. 48:686-691. https://doi.org/10.3746/jkfn.2019.48.6.686
  8. Kang, K.M., J.Y. Lee, M.U. Kim and S.H. Lee. 2016. Effect of quality characteristics and antioxidant activity of Korean cultivated wild ginseng extract. J. Korean Soc. Food Sci. Nutr. 45:1740-1746. https://doi.org/10.3746/jkfn.2016.45.12.1740
  9. Kim, E.L., C.S. Kim, H.Y. Lee, H.R. Lee, E.Y. Kim, M.C. Yoon and S.S. Shin. 2012. Mountain cultivated ginseng water boiled extract decreases blood glucose level and improves lipid metabolism in male db/db mice. Korea J. Herb 27:69-75. https://doi.org/10.6116/KJH.2012.27.2.69
  10. Kim, K., Y. Um, H.J. Eo, H.W. Park, K.S. Jeon and H.J. Kim. 2020. Study on the correlation between the ginsenoside contents and growth characteristics of wild-simulated ginseng with different year-roots (Panax ginseng C.A. Meyer). Korean J. Plant Res. 33(4):255-262.
  11. Kim, M.W., S.R. Ko, K.J. Choi and S.C. Kim. 1987. Distribution of saponin in various sections of Panax ginseng root and changes of its contents according to root age. Korean J. Ginseng Sci. 19:10-16.
  12. Kim, S.J., S.S. Shin, B.I. Seo and S.Y. Jee. 2004. Effect of mountain grown ginseng radix, mountain cultivated ginseng radix, and cultivated ginseng radix on apoptosis of HL-60 cells. Korea J. Herb 19:41.
  13. Koo, S.H. 2013. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin. Mol. Hepatol. 19:210-215. https://doi.org/10.3350/cmh.2013.19.3.210
  14. Kwon, S.J. and D.K. Chung. 2004. The immune-enhancing effect of mountain gown ginseng, mountain cultivated ginseng, and Panax ginseng. J. Oriental Neuropsychiatry 15:89-101.
  15. Lee, G., G.H. Na, W.K. Kim, M.Y. Baik, H.J. Lee and J.K. Hwang. 2017. Antiinflammatory effect of cultivated wild Panax ginseng extracts at various ages in RAW 26 4.6 macrophages. Food Eng. Prog. 21:201-207. https://doi.org/10.13050/foodengprog.2017.21.3.201
  16. Lee, G., G.S. Choi, J.Y. Lee, S.J. Yun, W.K. Kim, H.J. Lee, M.Y. Baik and J.K. Hwang. 2017. Proximate analysis and antioxidant activity of cultivated wild Panax ginseng. Food Eng. Prog. 21:208-214. https://doi.org/10.13050/foodengprog.2017.21.3.208
  17. Lee, S.M., S.Y. Park, G.S. Jang and S.Y. Ly. 2008. The protective effects of ethanol extract of wild-simulated ginseng on carbon tetrachloride induced acute hepatic injury in mouse. Korean J. Nutr. 41(8):701-710.
  18. Liu, Y., D.K. Qiu and X. Ma. 2012. Liver X receptors bridge hepatic lipid metabolism and inflammation. J. Dig. Dis. 13:69-74. https://doi.org/10.1111/j.1751-2980.2011.00554.x
  19. Park, J.D. 1996. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng C.A Meyer). Korean J. Ginseng Sci. 20:389-415.
  20. Pydyn, N., K. Miekus, J. Jura and J. Kotlinowski. 2020. New therapeutic strategies in nonalcoholic fatty liver disease: a focus on promising drugs for nonalcoholic steatohepatitis. Pharmacol. Rep. 72:1-12. https://doi.org/10.1007/s43440-019-00020-1
  21. Steffensen, K.R. and J.A. Gustafsson. 2004. Putative metabolic effects of the liver X receptor (LXR). Diabetes 53(1):S36-S42. https://doi.org/10.2337/diabetes.53.2007.s36
  22. Takahashi, Y., K. Sugimoto, H. Inui and T. Fukusato. 2015. Current pharmacological therapies for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 21(13):3777-3785. https://doi.org/10.3748/wjg.v21.i13.3777
  23. Younossi, Z., Q.M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, J. George and E. Bugianesi. 2018. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15:11-20. https://doi.org/10.1038/nrgastro.2017.109
  24. Younossi, Z.M. 2019. Non-alcoholic fatty liver disease - a global public health perspective. J. Hepatol. 70:531-544. https://doi.org/10.1016/j.jhep.2018.10.033