DOI QR코드

DOI QR Code

Ginseng polysaccharides: Potential antitumor agents

  • Ruizhi, Tao (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Keqin, Lu (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Gangfan, Zong (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Yawen, Xia (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Hongkuan, Han (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Yang, Zhao (Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine) ;
  • Zhonghong, Wei (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Yin, Lu (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine)
  • 투고 : 2022.03.03
  • 심사 : 2022.07.11
  • 발행 : 2023.01.02

초록

As a famous herbal medicine in China and Asia, ginseng (Panax ginseng C. A. Meyer) is also known as the "King of All Herbs" and has long been used in medicine and healthcare. In addition to the obvious biological activities of ginsenosides, ginseng polysaccharides (GPs) exhibit excellent antitumor, antioxidant stress, and immunomodulatory effects. In particular, GPs can exert an antitumor effect and is a potential immunomodulator. However, due to the complexity and diversity in the structures and components of GPs, their specific physicochemical properties, and underlying mechanisms remain unclear. In this article, we have summarized the factors influencing the antitumor activity of GPs and their mechanism of action, including the stimulation of the immune system, regulation of the gut microbiota, and direct action on tumor cells

키워드

과제정보

This work was financially supported by National Natural Science Foundation of China (82004124, 81961128020, and 81973734), China Postdoctoral Science Foundation (2020M671551), Natural Science Foundation of Jiangsu Province (BK20200154), Jiangsu Province Traditional Chinese Medicine Leading Talents Program (SLJ0229), The Open Project of Chinese Materia Medica First-Class Discipline of Nanjing University of Chinese Medicine (2020YLXK20), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22-2013 and KYCX22-2039).

참고문헌

  1. Yu Y, Shen M, Song Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review [J]. Carbohydr Polym 2018;183:91-101. https://doi.org/10.1016/j.carbpol.2017.12.009. 
  2. Xie JH, Jin ML, Morris GA, et al. Advances on bioactive polysaccharides from medicinal plants [J]. Crit Rev Food Sci Nutr 2016;56(Suppl 1):S60-84. https://doi.org/10.1080/10408398.2015.1069255. 
  3. Sugayama J, Kamasuka T, Takada S, et al. On the anticancer active polysaccharide prepared from bamboo grass [J]. J Antibiot 1966;19(3):132-6. 
  4. Corso CR, Mulinari Turin DE Oliveira N, Moura Cordeiro L, et al. Polysaccharides with antitumor effect in breast cancer: a systematic review of non-clinical studies [J]. Nutrients 2021;13(6). https://doi.org/10.3390/nu13062008. 
  5. Wang Y, Xing M, Cao Q, et al. Biological activities of fucoidan and the factors mediating its therapeutic effects: a review of recent studies [J]. Mar Drug 2019;17(3). https://doi.org/10.3390/md17030183. 
  6. Xiao Z, Deng Q, Zhou W, et al. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? [J] Pharmacol Ther 2021:107921. https://doi.org/10.1016/j.pharmthera.2021.107921. 
  7. Ding G, Gong Q, Ma J, et al. Immunosuppressive activity is attenuated by Astragalus polysaccharides through remodeling the gut microenvironment in melanoma mice [J]. Cancer Sci 2021;112(10):4050-63. https://doi.org/10.1111/cas.15078. 
  8. Guo C, Guo D, Fang L, et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon [J]. Carbohydr Polym 2021;267:118231. https://doi.org/10.1016/j.carbpol.2021.118231. 
  9. Zhao B, Lv C, Lu J. Natural occurring polysaccharides from Panax ginseng C. A. Meyer: a review of isolation, structures, and bioactivities [J]. Int J Biol Macromol 2019;133:324-36. https://doi.org/10.1016/j.ijbiomac.2019.03.229. 
  10. Wang N, Wang X, He M, et al. Ginseng polysaccharides: a potential neuroprotective agent [J]. J Ginseng Res 2021;45(2):211-7. https://doi.org/10.1016/j.jgr.2020.09.002. 
  11. Ovodov YS, Solov'Eva TF. Polysaccharides of panax ginseng [J]. Chem Nat Comp 1966;2(5):243-5.  https://doi.org/10.1007/BF00566981
  12. Jiao R, Liu Y, Gao H, et al. The anti-oxidant and antitumor properties of plant polysaccharides [J]. Am J Chin Med 2016;44(3):463-88. https://doi.org/10.1142/s0192415x16500269. 
  13. Kachur K, Suntres ZE. The antimicrobial properties of ginseng and ginseng extracts [J]. Exp Rev Anti-infect Ther 2016;14(1):81-94. https://doi.org/10.1586/14787210.2016.1118345. 
  14. Li N, Yu X, Yu QH, et al. Research progress on stability of polysaccharides in traditional Chinese medicine [J]. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J Chin Mater Medica 2019;44(22):4793-9. https://doi.org/10.19540/j.cnki.cjcmm.20190916.309. 
  15. Shin MS, Hwang SH, Yoon TJ, et al. Polysaccharides from ginseng leaves inhibit tumor metastasis via macrophage and NK cell activation [J]. Int J Biol Macromol 2017;103:1327-33. https://doi.org/10.1016/j.ijbiomac.2017.05.055. 
  16. Huang J, Liu D, Wang Y, et al. Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy [J]. Gut 2021. https://doi.org/10.1136/gutjnl-2020-321031. 
  17. Jia H, Zhao B, Zhang F, et al. Extraction, structural characterization, and anti-hepatocellular carcinoma activity of polysaccharides from panax ginseng meyer [J]. Front Oncol 2021;11:785455. https://doi.org/10.3389/fonc.2021.785455. 
  18. Xie FY, Zeng ZF, Huang HY. [Clinical observation on nasopharyngeal carcinoma treated with combined therapy of radiotherapy and ginseng polysaccharide injection] [J]. Zhongguo Zhong Xi Yi Jie He Za Zhi 2001;21(5):332-4. 
  19. Li Liping. Liu Jinsong Effect of ginseng polysaccharide assisted GP chemotherapy on non-small cell lung cancer. J] J Hunan Univ Trad Chin Med 2013;33(12):36-7. 
  20. Ma J, Liu H, Wang X. Effect of ginseng polysaccharides and dendritic cells on the balance of Th1/Th2 T helper cells in patients with non-small cell lung cancer [J]. J Trad Chin Med = Chung I Tsa Chih Ying Wen pan 2014;34(6):641-5. https://doi.org/10.1016/s0254-6272(15)30076-5. 
  21. Tu Xuesong, Huang Fuen, Qu Guangqiao, et al. Effects of ginseng compound polysaccharide on immune function and quality of life in elderly patients with advanced non-small cell lung cancer. J] Med Rev 2016;22(8):1659-61. + 64. 
  22. Xu M, Chen Q, Fan R, et al. Anti-inflammation effect of small molecule oligopeptides prepared from panax ginseng C. A. Meyer in rats [J]. Molecules 2019;24(5). https://doi.org/10.3390/molecules24050858. 
  23. Liu R, Chen QH, Ren JW, et al. Ginseng (panax ginseng meyer) oligopeptides protect against binge drinking-induced liver damage through inhibiting oxidative stress and inflammation in rats [J]. Nutrients 2018;10(11). https://doi.org/10.3390/nu10111665. 
  24. Xue H, Zhao Z, Lin Z, et al. Selective effects of ginseng pectins on galectin-3-mediated T cell activation and apoptosis [J]. Carbohydr Polym 2019;219:121-9. https://doi.org/10.1016/j.carbpol.2019.05.023. 
  25. Li C, Tian ZN, Cai JP, et al. Panax ginseng polysaccharide induces apoptosis by targeting Twist/AKR1C2/NF-1 pathway in human gastric cancer [J]. Carbohydr Polym 2014;102:103-9. https://doi.org/10.1016/j.carbpol.2013.11.016. 
  26. Cai JP, Wu YJ, Li C, et al. Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer [J]. Int J Biol Macromol 2013;57:22-5. https://doi.org/10.1016/j.ijbiomac.2013.03.010. 
  27. Tuncil YE, Xiao Y, Porter NT, et al. Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence [J]. mBio 2017;8(5). https://doi.org/10.1128/mBio.01068-17. 
  28. Wang CZ, Hou L, Wan JY, et al. Ginseng berry polysaccharides on inflammation-associated colon cancer: inhibiting T-cell differentiation, promoting apoptosis, and enhancing the effects of 5-fluorouracil [J]. J Ginseng Res 2020;44(2):282-90. https://doi.org/10.1016/j.jgr.2018.12.010. 
  29. Li B, Zhang N, Feng Q, et al. The core structure characterization and of ginseng neutral polysaccharide with the immune-enhancing activity [J]. Int J Biol Macromol 2019;123:713-22. https://doi.org/10.1016/j.ijbiomac.2018.11.140. 
  30. Guo M, Shao S, Wang D, et al. Recent progress in polysaccharides from Panax ginseng C. A. Meyer [J]. Food Funct 2021;12(2):494-518. https://doi.org/10.1039/d0fo01896a. 
  31. Lee SM, Bae BS, Park HW, et al. Characterization of Korean red ginseng (panax ginseng meyer): history, preparation method, and chemical composition [J]. J Ginseng Res 2015;39(4):384-91. https://doi.org/10.1016/j.jgr.2015.04.009. 
  32. Metwaly AM, Lianlian Z, Luqi H, et al. Black ginseng and its saponins:preparation, phytochemistry and pharmacological effects [J]. Molecules 2019;24(10). https://doi.org/10.3390/molecules24101856. 
  33. Wan JY, Fan Y, Yu QT, et al. Integrated evaluation of malonyl ginsenosides, amino acids and polysaccharides in fresh and processed ginseng [J]. J Pharm Biomed Anal 2015;107:89-97. https://doi.org/10.1016/j.jpba.2014.11.014. 
  34. Chen QL, Chen YJ, Zhou SS, et al. Laser microdissection hyphenated with high performance gel permeation chromatography-charged aerosol detector and ultra performance liquid chromatography-triple quadrupole mass spectrometry for histochemical analysis of polysaccharides in herbal medicine:ginseng, a case study [J]. Int J Biol Macromol 2018;107(Pt A):332-42. https://doi.org/10.1016/j.ijbiomac.2017.08.162. 
  35. Sun L, Wu D, Ning X, et al. a-Amylase-assisted extraction of polysaccharides from Panax ginseng [J]. Int J Biol Macromol 2015;75:152-7. https://doi.org/10.1016/j.ijbiomac.2015.01.025. 
  36. Chen F, Huang G. Antioxidant activity of polysaccharides from different sources of ginseng [J]. Int J Biol Macromol 2019;125:906-8. https://doi.org/10.1016/j.ijbiomac.2018.12.134. 
  37. Lee DY, Park CW, Lee SJ, et al. Anti-cancer effects of panax ginseng berry polysaccharides via activation of immune-related cells [J]. Frontiers in Pharmacology 2019;10:1411. https://doi.org/10.3389/fphar.2019.01411. 
  38. Cui L, Wang J, Huang R, et al. Analysis of pectin from Panax ginseng flower buds and their binding activities to galectin-3 [J]. Int J Biol Macromol 2019;128:459-67. https://doi.org/10.1016/j.ijbiomac.2019.01.129. 
  39. Cui L, Chen L, Yang G, et al. Structural characterization and immunomodulatory activity of a heterogalactan from Panax ginseng flowers [J]. Food Res Int 2021;140:109859. https://doi.org/10.1016/j.foodres.2020.109859. 
  40. Forster SC, Kumar N, Anonye BO, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses [J]. Nat Biotechnol 2019;37(2):186-92. https://doi.org/10.1038/s41587-018-0009-7. 
  41. Wu J, Wang K, Wang X, et al. The role of the gut microbiome and its metabolites in metabolic diseases [J]. Protein Cell 2021;12(5):360-73. https://doi.org/10.1007/s13238-020-00814-7. 
  42. Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease [J]. Nat Rev Immunol 2013;13(5):321-35. https://doi.org/10.1038/nri3430. 
  43. Ni W, Zhang X, Wang B, et al. Antitumor activities and immunomodulatory effects of ginseng neutral polysaccharides in combination with 5-fluorouracil [J]. Journal of Medicinal Food 2010;13(2):270-7. https://doi.org/10.1089/jmf.2009.1119. 
  44. Sun Y, Guo M, Feng Y, et al. Effect of ginseng polysaccharides on NK cell cytotoxicity in immunosuppressed mice [J]. Exp Ther Med 2016;12(6):3773-7. https://doi.org/10.3892/etm.2016.3840. 
  45. Lee YY, Kim SW, Youn SH, et al. Biological effects of Korean red ginseng polysaccharides in aged rat using global proteomic approach. [J] Mol 2020;25(13). https://doi.org/10.3390/molecules25133019. 
  46. Lee DY, Park CW, Lee SJ, et al. Immunostimulating and antimetastatic effects of polysaccharides purified from ginseng berry [J]. The American Journal of Chinese Medicine 2019;47(4):823-39. https://doi.org/10.1142/s0192415x19500435. 
  47. Hwang SH, Shin MS, Yoon TJ, et al. Immunoadjuvant activity in mice of polysaccharides isolated from the leaves of Panax ginseng C.A. Meyer [J]. Int J Biol Macromol 2018;107(Pt B):2695-700. https://doi.org/10.1016/j.ijbiomac.2017.10.160. 
  48. Erdei A, Lukacsi S, Macsik-Valent B, et al. Non-identical twins: different faces of CR3 and CR4 in myeloid and lymphoid cells of mice and men [J]. Semin Cell Dev Biol 2019;85:110-21. https://doi.org/10.1016/j.semcdb.2017.11.025. 
  49. VAN Bruggen R, Drewniak A, Jansen M, et al. Complement receptor 3, not Dectin-1, is the major receptor on human neutrophils for beta-glucanbearing particles [J]. Mol Immunol 2009;47(2-3):575-81. https://doi.org/10.1016/j.molimm.2009.09.018. 
  50. Brennan JJ, Gilmore TD. Evolutionary origins of toll-like receptor signaling [J]. Mol Biol Evol 2018;35(7):1576-87. https://doi.org/10.1093/molbev/msy050. 
  51. Brubaker SW, Bonham KS, Zanoni I, et al. Innate immune pattern recognition:a cell biological perspective [J]. Annual Review of Immunology 2015;33:257-90. https://doi.org/10.1146/annurev-immunol-032414-112240. 
  52. Kurt-Jones EA, Popova L, Kwinn L, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus [J]. Nature Immunology 2000;1(5):398-401. https://doi.org/10.1038/80833. 
  53. Sahasrabudhe NM, Beukema M, Tian L, et al. Dietary fiber pectin directly blocks toll-like receptor 2-1 and prevents doxorubicin-induced ileitis [J]. Front Immunol 2018;9:383. https://doi.org/10.3389/fimmu.2018.00383. 
  54. Takeda K, Akira S. Toll-like receptors [J]. Current Protocols in Immunology 2015;109:14. 2.1-.2.0. https://doi.org/10.1002/0471142735.im1412s109. 
  55. VAN Dammes EJ, Fouquaert E, Lannoo N, et al. Novel concepts about the role of lectins in the plant cell [J]. Adv Exp Med Biol 2011;705:271-94. https://doi.org/10.1007/978-1-4419-7877-6_13. 
  56. Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity [J]. Biochem Biophys Res Commun 2009;388(4):621-5. https://doi.org/10.1016/j.bbrc.2009.08.062. 
  57. Wang D, Shao S, Zhang Y, et al. Insight into polysaccharides from panax ginseng C. A. Meyer in improving intestinal inflammation: modulating intestinal microbiota and autophagy [J]. Front Immunol 2021;12:683911. https://doi.org/10.3389/fimmu.2021.683911. 
  58. Seo JY, Choi JW, Lee JY, et al. Enzyme hydrolysates of ginseng marc polysaccharides promote the phagocytic activity of macrophages via activation of TLR2 and mer tyrosine kinase [J]. Journal of Microbiology and Biotechnology 2018;28(6):860-73. https://doi.org/10.4014/jmb.1801.01003. 
  59. Linger RM, Keating AK, Earp HS, et al. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer [J]. Adv Cancer Res 2008;100:35-83. https://doi.org/10.1016/s0065-230x(08)00002-x. 
  60. Rothlin CV, Carrera-Silva EA, Bosurgi L, et al. TAM receptor signaling in immune homeostasis [J]. Annu Rev Immunol 2015;33:355-91. https://doi.org/10.1146/annurev-immunol-032414-112103. 
  61. Gabius HJ. Animal lectins [J]. European Journal of Biochemistry 1997;243(3):543-76. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00543.x. 
  62. Anderson K, Evers D, Rice KG. Structure and function of mammalian carbohydrate-lectin interactions [M]//FRASER-REID B O, TATSUTA K, THIEM J. Glycoscience: chemistry and chemical biology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 2445-82. 
  63. Kilpatrick DC. Animal lectins: a historical introduction and overview [J]. Biochimica et biophysica acta 2002;1572(2-3):187-97. https://doi.org/10.1016/s0304-4165(02)00308-2. 
  64. Dunphy JL, Balic A, Barcham GJ, et al. Isolation and characterization of a novel inducible mammalian galectin [J]. The Journal of Biological Chemistry 2000;275(41):32106-13. https://doi.org/10.1074/jbc.M003739200. 
  65. Irjala H, Johansson EL, Grenman R, et al. Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium [J]. J Exp Med 2001;194(8):1033-42. https://doi.org/10.1084/jem.194.8.1033. 
  66. Youn SH, Lee SM, Han CK, et al. Immune activity of polysaccharide fractions isolated from Korean red ginseng [J]. Molecules (Basel, Switzerland) 2020;25(16). https://doi.org/10.3390/molecules25163569. 
  67. Roy R, Murphy PV, Gabius HJ. Multivalent carbohydrate-lectin interactions:how synthetic chemistry enables insights into nanometric recognition. J]. Molecules (Basel, Switzerland) 2016;21(5). https://doi.org/10.3390/molecules21050629. 
  68. Weis WI, Drickamer K. Structural basis of lectin-carbohydrate recognition [J]. Annual Review of Biochemistry 1996;65:441-73. https://doi.org/10.1146/annurev.bi.65.070196.002301. 
  69. Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition [J]. Chem Rev 1998;98(2):637-74. https://doi.org/10.1021/cr940413g. 
  70. Mohajeri MH, Brummer RJM, Rastall RA, et al. The role of the microbiome for human health: from basic science to clinical applications [J]. Eur J Nutr 2018;57(Suppl 1):1-14. https://doi.org/10.1007/s00394-018-1703-4. 
  71. Yan S, Wei PC, Chen Q, et al. Functional and structural characterization of a β-glucosidase involved in saponin metabolism from intestinal bacteria [J]. Biochem Biophys Res Commun 2018;496(4):1349-56. https://doi.org/10.1016/j.bbrc.2018.02.018. 
  72. Gu F, Borewicz K, Richter B, et al. Vitro fermentation behavior of isomalto/malto-polysaccharides using human fecal inoculum indicates prebiotic potential [J]. Mol Nutr Food Res 2018;62(12):-1800232. https://doi.org/10.1002/mnfr.201800232. 
  73. Koh A, DE Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites [J]. Cell 2016;165(6):1332-45. https://doi.org/10.1016/j.cell.2016.05.041. 
  74. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer [J]. Nat Rev Microbiol 2014;12(10):661-72. https://doi.org/10.1038/nrmicro3344. 
  75. Hua M, Liu Z, Sha J, et al. Effects of ginseng soluble dietary fiber on serum antioxidant status, immune factor levels and cecal health in healthy rats [J]. Food Chem 2021;365:130641. https://doi.org/10.1016/j.foodchem.2021.130641. 
  76. Yang CM, Han QJ, Wang KL, et al. Astragalus and ginseng polysaccharides improve developmental, intestinal morphological, and immune functional characters of weaned piglets [J]. Front Physiol 2019;10:418. https://doi.org/10.3389/fphys.2019.00418. 
  77. Yao Y, Cai X, Fei W, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism [J]. Crit Rev Food Sci Nutr 2020:1-12. https://doi.org/10.1080/10408398.2020.1854675. 
  78. Luu M, Visekruna A. Microbial metabolites: novel therapeutic tools for boosting cancer therapies [J]. Trends Cell Biol 2021;31(11):873-5. https://doi.org/10.1016/j.tcb.2021.08.005. 
  79. Ma X, Zhou Z, Zhang X, et al. Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice [J]. Cell Biol Toxicol 2020;36(5):509-15. https://doi.org/10.1007/s10565-020-09518-4. 
  80. Caleffi ER, Krausova G, Hyrslova I, et al. Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots [J]. Int J Biol Macromol 2015;80:392-9. https://doi.org/10.1016/j.ijbiomac.2015.06.053. 
  81. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Mapping human microbiome drug metabolism by gut bacteria and their genes [J]. Nature 2019;570(7762):462-7. https://doi.org/10.1038/s41586-019-1291-3. 
  82. Ma W, Nguyen LH, Song M, et al. Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men [J]. Genome Med 2021;13(1):102. https://doi.org/10.1186/s13073-021-00921-y. 
  83. Hua M, Sun Y, Shao Z, et al. Functional soluble dietary fiber from ginseng residue: polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity [J]. J Food Biochem 2020;44(12):-13524. https://doi.org/10.1111/jfbc.13524. 
  84. Li S, Qi Y, Chen L, et al. Effects of Panax ginseng polysaccharides on the gut microbiota in mice with antibiotic-associated diarrhea [J]. Int J Biol Macromol 2019;124:931-7. https://doi.org/10.1016/j.ijbiomac.2018.11.271. 
  85. Vieira-Silva S, Falony G, Darzi Y, et al. Species-function relationships shape ecological properties of the human gut microbiome [J]. Nat Microbiol 2016;1(8):16088. https://doi.org/10.1038/nmicrobiol.2016.88. 
  86. Dong WW, Xuan FL, Zhong FL, et al. Comparative analysis of the rats' gut microbiota composition in animals with different ginsenosides metabolizing activity [J]. J Agric Food Chem 2017;65(2):327-37. https://doi.org/10.1021/acs.jafc.6b04848. 
  87. Murga-Garrido SM, Hong Q, Cross TL, et al. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. [J]. Microbiome 2021;9(1):117. https://doi.org/10.1186/s40168-021-01061-6. 
  88. Zhang X, Chen S, Duan F, et al. Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota [J]. J Ginseng Res 2021;45(2):334-43. https://doi.org/10.1016/j.jgr.2020.08.001. 
  89. Kim KA, Yoo HH, Gu W, et al. Effect of a soluble prebiotic fiber, NUTRIOSE, on the absorption of ginsenoside Rd in rats orally administered ginseng [J]. J Ginseng Res 2014;38(3):203-7. https://doi.org/10.1016/j.jgr.2014.03.003. 
  90. Shen H, Gao XJ, Li T, et al. Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism [J]. J Ethnopharmacol 2018;216:47-56. https://doi.org/10.1016/j.jep.2018.01.021. 
  91. Zhou SS, Xu J, Zhu H, et al. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction [J]. Sci Rep 2016;6:22474. https://doi.org/10.1038/srep22474. 
  92. Wang H, Zheng Y, Sun Q, et al. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies [J]. J Nanobiotechnology 2021;19(1):322. https://doi.org/10.1186/s12951-021-01062-5. 
  93. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease:the balancing act of BCL-2 family proteins [J]. Nat Rev Mol Cell Biol 2019;20(3):175-93. https://doi.org/10.1038/s41580-018-0089-8. 
  94. Habtetsion T, Ding ZC, Pi W, et al. Alteration of tumor metabolism by CD4+ T cells leads to TNF-a-dependent intensification of oxidative stress and tumor cell death [J]. Cell Metab 2018;28(2):228-42. https://doi.org/10.1016/j.cmet.2018.05.012. -6. 
  95. Wang K, Zhang H, Han Q, et al. Effects of astragalus and ginseng polysaccharides on growth performance, immune function and intestinal barrier in weaned piglets challenged with lipopolysaccharide [J]. J Anim Physiol Anim Nutr (Berl) 2020;104(4):1096-105. https://doi.org/10.1111/jpn.13244. 
  96. Hanahan D. Hallmarks of cancer: new dimensions [J]. Cancer Discov 2022;12(1):31-46. https://doi.org/10.1158/2159-8290.Cd-21-1059. 
  97. Hong Y, Sheng L, Zhong J, et al. Desulfovibrio vulgaris, a potent acetic acidproducing bacterium, attenuates nonalcoholic fatty liver disease in mice [J]. Gut Microbes 2021;13(1):1-20. https://doi.org/10.1080/19490976.2021.1930874. 
  98. Wu TR, Lin CS, Chang CJ, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis [J]. Gut 2019;68(2):248-62. https://doi.org/10.1136/gutjnl-2017-315458. 
  99. Liu C, DU P, Guo Y, et al. Extraction, characterization of aloe polysaccharides and the in-depth analysis of its prebiotic effects on mice gut microbiota [J]. Carbohydr Polym 2021;261:117874. https://doi.org/10.1016/j.carbpol.2021.117874. 
  100. Patel SA, Minn AJ. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies [J]. Immunity 2018;48(3):417-33. https://doi.org/10.1016/j.immuni.2018.03.007. 
  101. Cho YJ, Son HJ, Kim KS. A 14-week randomized, placebo-controlled, doubleblind clinical trial to evaluate the efficacy and safety of ginseng polysaccharide (Y-75) [J]. J Transl Med 2014;12:283. https://doi.org/10.1186/s12967-014-0283-1. 
  102. Wang K, Zhang H, Han Q, et al. Effects of astragalus and ginseng polysaccharides on growth performance, immune function and intestinal barrier in weaned piglets challenged with lipopolysaccharide [J]. J Anim Physiol Anim Nutr (Berl) 2020;104(4):1096-105. https://doi.org/10.1111/jpn.13244. 
  103. Hua M, Sun Y, Shao Z, et al. Functional soluble dietary fiber from ginseng residue: Polysaccharide characterization, structure, antioxidant, and enzyme inhibitory activity [J]. J Food Biochem 2020;44(12):-13524. https://doi.org/10.1111/jfbc.13524.