DOI QR코드

DOI QR Code

Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice

  • Kyung-Jun, Boo (School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Edson Luck, Gonzales (School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Chilly Gay, Remonde (School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Jae Young, Seong (Graduate School of Medicine, Korea University) ;
  • Se Jin, Jeon (School of Medicine and Center for Neuroscience Research, Konkuk University) ;
  • Yeong-Min, Park (Graduate School of Medicine, Konkuk University) ;
  • Byung-Joo, Ham (Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Chan Young, Shin (School of Medicine and Center for Neuroscience Research, Konkuk University)
  • Received : 2022.05.30
  • Accepted : 2022.09.20
  • Published : 2023.03.01

Abstract

Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2016R1A5A2012284 and NRF-2020M3E5D9080165 to Dr. Shin) and by the Korea Drug Development Fund, funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HN21C1076 to Dr. Jeon).

References

  1. Akaishi, T., Yamamoto, S. and Abe, K. (2022) 3',4',7-Trihydroxyflavone downregulates NO production in LPS- or IFN-γ-activated MG6 microglial cells by attenuating the JNK-STAT1 pathway. Biol. Pharm. Bull. 45, 301-308.  https://doi.org/10.1248/bpb.b21-00841
  2. Bao, A.-M. and Swaab, D. F. (2019) The human hypothalamus in mood disorders: the HPA axis in the center. IBRO Rep. 6, 45-53.  https://doi.org/10.1016/j.ibror.2018.11.008
  3. Boku, S., Nakagawa, S., Toda, H. and Hishimoto, A. (2018) Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin. Neurosci. 72, 3-12.  https://doi.org/10.1111/pcn.12604
  4. Brigitta, B. (2002) Pathophysiology of depression and mechanisms of treatment. Dialogues Clin. Neurosci. 4, 7-20.  https://doi.org/10.31887/DCNS.2002.4.1/bbondy
  5. Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C. and Gould, T. D. (2012) The mouse forced swim test. J. Vis. Exp. (59), e3638. 
  6. Chen, H.-J. C., Spiers, J. G., Sernia, C. and Lavidis, N. A. (2016) Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum. Free Radic. Biol. Med. 90, 219-229.  https://doi.org/10.1016/j.freeradbiomed.2015.11.023
  7. Choi, A. J. and Ryter, S. W. (2014) Inflammasomes: molecular regulation and implications for metabolic and cognitive diseases. Mol. Cells 37, 441-448.  https://doi.org/10.14348/molcells.2014.0104
  8. Coll, R. C., Robertson, A. A., Chae, J. J., Higgins, S. C., Munoz-Planillo, R., Inserra, M. C., Vetter, I., Dungan, L. S., Monks, B. G., Stutz, A., Croker, D. E., Butler, M. S., Haneklaus, M., Sutton, C. E., Nunez, G., Latz, E., Kastner, D. L., Mills, K. H., Masters, S. L., Schroder, K., Cooper, M. and O'Neill, L. A. (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248-255.  https://doi.org/10.1038/nm.3806
  9. Dannlowski, U., Ohrmann, P., Bauer, J., Kugel, H., Baune, B. T., Hohoff, C., Kersting, A., Arolt, V., Heindel, W., Deckert, J. and Suslow, T. (2007) Serotonergic genes modulate amygdala activity in major depression. Genes Brain Behav. 6, 672-676.  https://doi.org/10.1111/j.1601-183X.2006.00297.x
  10. Delgado, P. L. (2000) Depression: the case for a monoamine deficiency. J. Clin. Psychiatry 61 Suppl 6, 7-11.  https://doi.org/10.4088/JCP.v61n0103
  11. Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J., Vos, T. and Whiteford, H. A. (2013) Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 10, e1001547. 
  12. Frisbee, J. C., Brooks, S. D., Stanley, S. C. and d'Audiffret, A. C. (2015) An unpredictable chronic mild stress protocol for instigating depressive symptoms, behavioral changes and negative health outcomes in rodents. J. Vis. Exp. (106), 53109. 
  13. Hahon, N. and Ong, T. (1980) Action of antischistosomal drugs, hycanthone and its analog 1A-4 N-oxide, on viral interferon induction. J. Toxicol. Environ. Health 6, 705-712.  https://doi.org/10.1080/15287398009529889
  14. Hoyo-Becerra, C., Schlaak, J. F. and Hermann, D. M. (2014) Insights from interferon-alpha-related depression for the pathogenesis of depression associated with inflammation. Brain Behav. Immun. 42, 222-231.  https://doi.org/10.1016/j.bbi.2014.06.200
  15. Jeon, S. A., Lee, E., Hwang, I., Han, B., Park, S., Son, S., Yang, J., Hong, S., Kim, C. H., Son, J. and Yu, J. W. (2017) NLRP3 inflammasome contributes to lipopolysaccharide-induced depressive-like behaviors via indoleamine 2,3-dioxygenase induction. Int. J. Neuropsychopharmacol. 20, 896-906.  https://doi.org/10.1093/ijnp/pyx065
  16. Jeon, S. W. and Kim, Y.-K. (2017) Inflammation-induced depression: its pathophysiology and therapeutic implications. J. Neuroimmunol. 313, 92-98.  https://doi.org/10.1016/j.jneuroim.2017.10.016
  17. Jeon, S. W. and Kim, Y. K. (2018) The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J. Inflamm. Res. 11, 179-192.  https://doi.org/10.2147/JIR.S141033
  18. Jesulola, E., Micalos, P. and Baguley, I. J. (2018) Understanding the pathophysiology of depression: from monoamines to the neurogenesis hypothesis model-are we there yet? Behav. Brain Res. 341, 79-90.  https://doi.org/10.1016/j.bbr.2017.12.025
  19. Karlowitz, R., Stanifer, M. L., Roedig, J., Andrieux, G., Bojkova, D., Bechtel, M., Smith, S., Kowald, L., Schubert, R., Boerries, M., Cinatl, J., Jr., Boulant, S. and van Wijk, S. (2022) USP22 controls type III interferon signaling and SARS-CoV-2 infection through activation of STING. Cell Death Dis. 13, 684. 
  20. Keller, J., Gomez, R., Williams, G., Lembke, A., Lazzeroni, L., Murphy, G. M., Jr. and Schatzberg, A. F. (2017) HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 22, 527-536.  https://doi.org/10.1038/mp.2016.120
  21. Kim, B. H., Shenoy, A. R., Kumar, P., Das, R., Tiwari, S. and MacMicking, J. D. (2011) A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science 332, 717-721.  https://doi.org/10.1126/science.1201711
  22. Kim, J. W., Autry, A. E., Na, E. S., Adachi, M., Bjorkholm, C., Kavalali, E. T. and Monteggia, L. M. (2021) Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat. Neurosci. 24, 1100-1109. https://doi.org/10.1038/s41593-021-00868-8
  23. Krishnan, V. and Nestler, E. J. (2008) The molecular neurobiology of depression. Nature 455, 894-902.  https://doi.org/10.1038/nature07455
  24. Li, K. D., Yan, K., Wang, Q. S., Tian, J. S., Xu, D., Zhang, W. Y. and Cui, Y. L. (2019) Antidepressant-like effects of dietary gardenia blue pigment derived from genipin and tyrosine. Food Funct. 10, 4533-4545.  https://doi.org/10.1039/C9FO00480G
  25. Liu, S., Imani, S., Deng, Y., Pathak, J. L., Wen, Q., Chen, Y. and Wu, J. (2020) Targeting IFN/STAT1 pathway as a promising strategy to overcome radioresistance. OncoTargets Ther. 13, 6037-6050.  https://doi.org/10.2147/OTT.S256708
  26. Lopez-Leon, S., Janssens, A., Gonzalez-Zuloeta Ladd, A., Del-Favero, J., Claes, S., Oostra, B. and van Duijn, C. (2008) Meta-analyses of genetic studies on major depressive disorder. Mol. Psychiatry 13, 772-785.  https://doi.org/10.1038/sj.mp.4002088
  27. Malireddi, R. and Kanneganti, T.-D. (2013) Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection. Front. Cell. Infect. Microbiol. 3, 77. 
  28. Marcus, M., Yasamy, M. T., Ommeren, M. V., Chisholm, D., Saxena, S., Yasamy, M. T., m, V. O., Ommeren, M. V. and Chrisholm, D. (2012) Depression: a global public health concern. doi: 10.1037/e517532013-004. 
  29. Mondimore, F. M., Zandi, P. P., Mackinnon, D. F., McInnis, M. G., Miller, E. B., Crowe, R. P., Scheftner, W. A., Marta, D. H., Weissman, M. M., Levinson, D. F., Murphy-Ebenez, K. P., Depaulo, J. R., Jr. and Potash, J. B. (2006) Familial aggregation of illness chronicity in recurrent, early-onset major depression pedigrees. Am. J. Psychiatry 163, 1554-1560.  https://doi.org/10.1176/ajp.2006.163.9.1554
  30. Murakami, Y., Ishibashi, T., Tomita, E., Imamura, Y., Tashiro, T., Watcharanurak, K., Nishikawa, M., Takahashi, Y., Takakura, Y., Mitani, S., Fujigaki, H., Ohta, Y., Kubo, H., Mamiya, T., Nabeshima, T., Kim, H. C., Yamamoto, Y. and Saito, K. (2016) Depressive symptoms as a side effect of Interferon-alpha therapy induced by induction of indoleamine 2,3-dioxygenase 1. Sci. Rep. 6, 29920. 
  31. O'Connor, J. C., Lawson, M. A., Andre, C., Moreau, M., Lestage, J., Castanon, N., Kelley, K. W. and Dantzer, R. (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry 14, 511-522.  https://doi.org/10.1038/sj.mp.4002148
  32. Orsolini, L., Latini, R., Pompili, M., Serafini, G., Volpe, U., Vellante, F., Fornaro, M., Valchera, A., Tomasetti, C., Fraticelli, S., Alessandrini, M., La Rovere, R., Trotta, S., Martinotti, G., Di Giannantonio, M. and De Berardis, D. (2020) Understanding the complex of suicide in depression: from research to clinics. Psychiatry Investig. 17, 207-221.  https://doi.org/10.30773/pi.2019.0171
  33. Ovstebo, R., Olstad, O. K., Brusletto, B., Moller, A. S., Aase, A., Haug, K. B., Brandtzaeg, P. and Kierulf, P. (2008) Identification of genes particularly sensitive to lipopolysaccharide (LPS) in human monocytes induced by wild-type versus LPS-deficient Neisseria meningitidis strains. Infect. Immun. 76, 2685-2695.  https://doi.org/10.1128/IAI.01625-07
  34. Pilla-Moffett, D., Barber, M. F., Taylor, G. A. and Coers, J. (2016) Interferon-inducible GTPases in host resistance, inflammation and disease. J. Mol. Biol. 428, 3495-3513.  https://doi.org/10.1016/j.jmb.2016.04.032
  35. Raison, C. L., Capuron, L. and Miller, A. H. (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 27, 24-31.  https://doi.org/10.1016/j.it.2005.11.006
  36. Schindler, C., Levy, D. E. and Decker, T. (2007) JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282, 20059-20063.  https://doi.org/10.1074/jbc.R700016200
  37. Shuai, K. and Liu, B. (2003) Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900-911.  https://doi.org/10.1038/nri1226
  38. Shyn, S. I. and Hamilton, S. P. (2010) The genetics of major depression: moving beyond the monoamine hypothesis. Psychiatr. Clin. North Am. 33, 125-140.  https://doi.org/10.1016/j.psc.2009.10.004
  39. Song, C., Halbreich, U., Han, C., Leonard, B. and Luo, H. (2009) Imbalance between pro-and anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry 42, 182-188.  https://doi.org/10.1055/s-0029-1202263
  40. Strawbridge, R., Young, A. H. and Cleare, A. J. (2017) Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr. Dis. Treat. 13, 1245-1262.  https://doi.org/10.2147/NDT.S114542
  41. Suento, W. J., Kunisawa, K., Wulaer, B., Kosuge, A., Iida, T., Fujigaki, S., Fujigaki, H., Yamamoto, Y., Tanra, A. J., Saito, K., Mouri, A. and Nabeshima, T. (2021) Prefrontal cortex miR-874-3p prevents lipopolysaccharide-induced depression-like behavior through inhibition of indoleamine 2,3-dioxygenase 1 expression in mice. J. Neurochem. 157, 1963-1978.  https://doi.org/10.1111/jnc.15222
  42. Sulakhiya, K., Keshavlal, G. P., Bezbaruah, B. B., Dwivedi, S., Gurjar, S. S., Munde, N., Jangra, A., Lahkar, M. and Gogoi, R. (2016) Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neurosci. Lett. 611, 106-111.  https://doi.org/10.1016/j.neulet.2015.11.031
  43. Swanson, K. V., Deng, M. and Ting, J. P. (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477-489.  https://doi.org/10.1038/s41577-019-0165-0
  44. Tan, G., Xu, F., Song, H., Yuan, Y., Xiao, Q., Ma, F., Qin, F. X. and Cheng, G. (2018) Identification of TRIM14 as a type I IFN-stimulated gene controlling hepatitis B virus replication by targeting HBx. Front. Immunol. 9, 1872. 
  45. Troubat, R., Barone, P., Leman, S., Desmidt, T., Cressant, A., Atanasova, B., Brizard, B., El Hage, W., Surget, A., Belzung, C. and Camus, V. (2021) Neuroinflammation and depression: a review. Eur. J. Neurosci. 53, 151-171.  https://doi.org/10.1111/ejn.14720
  46. Vreeburg, S. A., Hoogendijk, W. J., van Pelt, J., Derijk, R. H., Verhagen, J. C., van Dyck, R., Smit, J. H., Zitman, F. G. and Penninx, B. W. (2009) Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch. Gen. Psychiatry 66, 617-626.  https://doi.org/10.1001/archgenpsychiatry.2009.50
  47. Wichers, M. C. and Maes, M. (2004) The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression. J. Psychiatry Neurosci. 29, 11-17. 
  48. Xiang, L., Szebeni, K., Szebeni, A., Klimek, V., Stockmeier, C. A., Karolewicz, B., Kalbfleisch, J. and Ordway, G. A. (2008) Dopamine receptor gene expression in human amygdaloid nuclei: elevated D4 receptor mRNA in major depression. Brain Res. 1207, 214-224.  https://doi.org/10.1016/j.brainres.2008.02.009
  49. Xie, Q., Shen, W. W., Zhong, J., Huang, C., Zhang, L. and Li, J. (2014) Lipopolysaccharide/adenosine triphosphate induces IL1beta and IL-18 secretion through the NLRP3 inflammasome in RAW264.7 murine macrophage cells. Int. J. Mol. Med. 34, 341-349.  https://doi.org/10.3892/ijmm.2014.1755
  50. Yang, P., Gao, Z., Zhang, H., Fang, Z., Wu, C., Xu, H. and Huang, Q.-J. (2015) Changes in proinflammatory cytokines and white matter in chronically stressed rats. Neuropsychiatr. Dis. Treat. 11, 597-607.  https://doi.org/10.2147/NDT.S78131
  51. Yi, J. H., Jeon, J., Kwon, H., Cho, E., Yun, J., Lee, Y. C., Ryu, J. H., Park, S. J., Cho, J. H. and Kim, D. H. (2020) Rubrofusarin attenuates chronic restraint stress-induced depressive symptoms. Int. J. Mol. Sci. 21, 3454. 
  52. Zhao, G. and Liu, X. (2019) Neuroimmune advance in depressive disorder. Adv. Exp. Med. Biol. 1180, 85-98. https://doi.org/10.1007/978-981-32-9271-0_4