Acknowledgement
The authors acknowledge funding from Italian Ministry of University and Research: PRIN research project 2022B2X937, "NextGenSProDesT Next Generation Space Propulsion Design Techniques".
References
- Balay, S., Gropp, W.D., McInnes, L.C. and Smith, B.F. (1997), Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, Birkhauser Press.
- Barth, T.J. and Jespersen, D.C. (1989), "The design and application of upwind schemes on unstructured meshes", AIAA 27th Aerospace Sciences Meeting, Reno, January. https://doi.org/10.2514/6.1989-366.
- Broyden, C.G. (1969), "A new double-rank minimization algorithm", Notic. Am. Math. Soc., 16, 670.
- Ferrero, A. and D'Ambrosio, D. (2020), "A hybrid numerical flux for supersonic flows with application to rocket nozzles", Adv. Aircraft Spacecraft Sci., 7(5), 387-404. https://doi.org/10.1063/5.0026763.
- Ferrero, A., Iollo, A. and Larocca, F. (2019), "RANS closure approximation by artificial neural networks", ETC 2019-13th European Turbomachinery Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Lausanne, Switzerland, April.
- Ferrero, A., Iollo, A. and Larocca, F. (2020), "Field inversion for data-augmented RANS modelling in turbomachinery flows", Comput. Fluid., 201, 104474. https://doi.org/10.1016/j.compfluid.2020.104474.
- Foures, D.P.G., Dovetta, N., Sipp, D. and Schmid, P.J. (2014), "A data-assimilation method for Reynoldsaveraged Navier-Stokes-driven mean flow reconstruction", J. Fluid Mech., 759, 404-431. https://doi.org/10.1017/jfm.2014.566.
- Geuzaine, G. and Remacle, J.F. (2009), "Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities", Int. J. Numer. Meth. Eng., 79(11), 1309-1331. https://doi.org/10.1002/nme.2579 .
- Greenblatt, D., Paschal, K.B., Yao, C.S., Harris, J., Schaeffler, N.W. and Washburn, A.E. (2006), "Experimental investigation of separation control Part 1: Baseline and Steady Suction", AIAA J., 44(12), 2820-2830. https://doi.org/10.2514/1.13817.
- Holland, J.H. (1992), "Genetic algorithms", Scientif. Am., 267(1), 66-73. https://doi.org/10.1038/scientificamerican0792-66
- Ling, J. and Templeton, J. (2015), "Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty", Phys. Fluid., 27, 085103. https://doi.org/10.1063/1.4927765.
- Ling, J., Kurzawski, A. and Templeton, J. (2016), "Reynolds averaged turbulence modelling using deep neural networks with embedded invariance", J. Fluid Mech., 807, 155-166. https://doi.org/10.1017/jfm.2016.615.
- Menter, F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598-1605. https://doi.org/10.2514/3.12149.
- Nelder, J.A. and Mead, R. (1965), "A simplex method for function minimization", Comput. J., 7, 308-313. https://doi.org/10.1093/comjnl/7.4.308.
- Pandolfi, M. (1984), "A contribution to the numerical prediction of unsteady flows", AIAA J., 22(5), 602-610. https://doi.org/10.2514/3.48491.
- Parish, J.L. and Duraisamy, K. (2016), "A paradigm for data-driven predictive modeling using field inversion and machine learning", J. Comput. Phys., 305, 758-774. https://doi.org/10.1016/j.jcp.2015.11.012.
- Parneix, S., Laurence, D. and Durbin, P.A. (1998), "A procedure for using DNS databases", J. Fluid. Eng., 120(1), 40-47. https://doi.org/10.1115/1.2819658.
- PETSc (2023), Portable, Extensible Toolkit for Scientific Computation. https://petsc.org/
- PETSc/TAO Users Manual (2023), Technical Report ANL-21/39-Revision 3.19, Argonne National Laboratory.
- Pope, S. (1975), "A more general effective-viscosity hypothesis", J. Fluid Mech., 72(2), 331-340. https://doi.org/10.1017/S0022112075003382.
- Powell, M.J.D. (1964), "An efficient method for finding the minimum of a function of several variables without calculating derivatives", Comput. J., 7, 155-162. https://doi.org/10.1093/comjnl/7.2.155.
- Rumsey, C., Smith, B. and Huang, G. (2010), "Description of a website resource for turbulence modeling verification and validation", AIAA 40th Fluid Dynamics Conference and Exhibit, Chichago, USA, JuneJuly. https://doi.org/10.2514/6.2010-4742.
- Rusanov, V.V. (1962), "The calculation of the interaction of nonstationary shock waves and obstacles", USSR Comput. Math. Math. Phys., 1(2), 304-320. https://doi.org/10.1016/0041-5553(62)90062-9.
- Sandberg, R.D. and Michelassi, V. (2019), "The current state of high-fidelity simulations for main gas path turbomachinery components and their industrial impact", Flow Turbul. Combus., 102, 797-848. https://doi.org/10.1007/s10494-019-00013-3.
- Sandberg, R.D. and Weatheritt, J. (2014), "A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship", J. Comput. Phys., 325, 73-94. https://doi.org/10.1016/j.jcp.2016.08.015.
- Singh, A.P., Medida, S. and Duraisamy, K. (2017), "Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils", AIAA J., 55(7), 2215-2227. https://doi.org/10.2514/1.J055595.
- Wang, J.X., Wu, J.L. and Xiao, H. (2017), "Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data", Phys. Rev. Fluid., 2, 034603. https://doi.org/10.1103/PhysRevFluids.2.034603.
- Wu, J.L., Wang, J.X., Xiao, H. and Ling, J. (2017), "A priori assessment of prediction confidence for data driven turbulence modeling", Flow Turbul. Combus., 99, 25-46. https://doi.org/10.1007/s10494-017-9807-0.
- Wu, J.L., Xiao, H. and Paterson, E. (2018), "Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework", Phys. Rev. Fluid., 3(7), 074602. https://doi.org/10.1103/PhysRevFluids.3.074602.
- Xiao, H. and Cinnella, P. (2019), "Quantification of model uncertainty in RANS simulations: A review", Progr. Aerosp. Sci., 108, 1-31. https://doi.org/10.1016/j.paerosci.2018.10.001.
- Xiao, H., Wu, J.L., Laizet, S. and Duan, L. (2020), "Flows over periodic hills of parameterized geometries: A dataset for data-driven turbulence modeling from direct simulations", Comput. Fluid., 200, 104431. https://doi.org/10.1016/j.compfluid.2020.104431.
- Zhao, Y., Akolekar, H.D., Weatheritt, J., Michelassi, V. and Sandberg, R.D. (2020), "RANS turbulence model development using CFD driven machine learning", J. Comput. Phys., 411, 109413. https://doi.org/10.1016/j.jcp.2020.109413.