Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA163269). 또한 본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과임.
References
- Kang, K., Wang, X. (2014). Fully Convolutional Neural Networks for Crowd Segmentation, arXiv:1411.4464, https:// arxiv.org/abs/1411.4464 (Nov. 18. 2023).
- Kwon, S. C., Kim, M. Y., Kim, T. Y. (2008). The Choice of Measurement Techniques in Survey and Recording of Historic Building in Mordern Ages of Korea, Autumn Annual Conference of AIK 2008, 28(1), pp. 431-434.
- Kwon, W., Chun, J. Y. (2006). Constitution of Work Process for the Remodeling Construction Project in Planning Phase, Korean Journal of Construction Engineering and Management, 7(6), pp. 165-174.
- Lim, H., Lee, Y., Jee, M., Go, M., Kim, H., Kim, Wo. (2019). Efficient Inference of Image Objects using Semantic Segmentation, Journal of Broadcast Engineering (JBE), 24(1), pp. 67-76. https://doi.org/10.5909/JBE.2019.24.1.67
- Lim, H., Lee, Y., Jee, M., Go, M., Kim, H., Kim, Wo. (2019). Efficient Inference of Image Objects Using Semantic Segmentation, Journal of Broadcast Engineering, 24(1), pp. 67-76. https://doi.org/10.5909/JBE.2019.24.1.67
- Long, J., Shelhamer, E., Darrell, T. (2015). Fully Convolutional Networks for Semantic Segmentation, CVPR 2015, pp7). 3431-3440.
- Long, J., Shelhamer, E., Darrell, T. (2015). Fully Convolutional networks for Semantic Segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440.
- Min, J. S., Park, H. K, (2001). A Study on the Remodeling Process of Building, Autumn Annual Conference of AIK 2001, 21(2), pp. 127-130.
- Noh, H., Hong, S., Han, B. (2015) Learning Deconvolution Network for Semantic Segmentation, arXiv:1505.04366, https://arxiv.org/abs/1505.04366 (No. 22. 2023).
- Noh, H., Hong, S., Han, B. (2015) Learning Deconvolution Network for Semantic Segmentation, arXiv:1505.04366, https://arxiv.org/abs/1505.04366 (Nov. 22. 2023).
- Qi, C. R., Su, H., Mo, K., Guibas, L. J. (2017a). PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, arXiv:1612.00593v2, https://arxiv.org/abs/1612.00593v2 (Dec. 20. 2023).
- Qi, C. R., Su, H., Mo, K., Guibas, L. J. (2017a). Pointnet: Deep Learning on Point Sets for 3D Classification and Segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652-660.
- Qi, C. R., Yi, L., Su, H., Guibas, L. J, (2017b). PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, Advances in Neural Information Processing Systems, 30.
- Rukhovich, D., Vorontsova, A., Konushin, A. (2021), FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection, European Conference on Computer Vision, pp. 477-493.
- Yang, B., Luo, W., Urtasun, R. (2018). PIXOR: Real-time 3D Object Detection from Point Clouds, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 7652-7660.
- Zhou, Y., Tuzel, O. (2018). VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.4490-4499.