DOI QR코드

DOI QR Code

Seismic performance of precast assembled bridge piers with hybrid connection

  • Shuang, Zou (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Heisha, Wenliuhan (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Yanhui, Liu (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Zhipeng, Zhai (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Chongbin, Zhang (China Railway Engineering Design and Consulting Group Co., Ltd.)
  • Received : 2022.01.12
  • Accepted : 2023.01.11
  • Published : 2023.02.10

Abstract

Precast assembled bridge piers with hybrid connection (PASP) use both tendons and socket connections. To study the seismic performance of PASP, a full-scale in-situ test was performed based on an actual bridge project. The elastic-plastic fiber model of PASP was established using finite element software, and numerical analyses were performed to study the influence of prestress degree and socket depth on the PASP seismic performance. The results show that the typical failure mode of PASP under horizontal load is bending failure dominated by concrete cracking at the joint between the column and cushion cap. The cracking of the pier concrete and opening of joints depend on the prestress degree and socket depth. The prestressing tendons and socket connection can provide enough ductility, strength, restoration capability, and bending strength under small horizontal displacements. Although the bearing capacity and post yield stiffness of the pier can be improved to some extent by increasing the prestressing force, ductility is reduced, and residual deformation is increased. Overall, there are reasonable minimum socket depths to ensure the reliability of the socket connection.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Key Research & Development Program of China (2022YFC3801201).

References

  1. Bu, Z.Y., Ding, Y. and Li, Y.S. (2012), "Investigation of the seismic performance of precast segmental tall bridge columns", Struct. Eng. Mech., 43(3), 287-309. https://doi.org/10.12989/sem.2012.43.3.287.
  2. Cai, Z.K., Wei, Y., Wang, Z.Y. and Smith, S.T. (2021), "Seismic behavior of precast segmental bridge columns reinforced with hybrid FRP-steel bars", Eng. Struct., 228, 111484. https://doi.org/10.1016/j.engstruct.2020.111484.
  3. Cai, Z.K., Zhou, Z. and Wang, Z.Y. (2019), "Influencing factors of residual drifts of precast segmental bridge columns with energy dissipation bars", Adv. Struct. Eng., 22(1), 126-140. https://doi.org/10.1177/1369433218780545.
  4. Ghiamat, R., Madhkhan, M. and Bakhshpoori, T. (2019), "Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm", Struct. Eng. Mech., 72(4), 503-512. https://doi.org/10.12989/sem.2019.72.4.503.
  5. Jia, J.F., Zhao, J.Y. and Zhang, Q. (2017), "Cyclic testing on seismic behavior of precast segmental CFST bridge piers with bolted connection", Chin. J. Highw. Transp., 30(12), 242-249.
  6. Kim, D.H., Moon, D.Y., Kim, M.K., Zi, G. and Roh, H. (2015), "Experimental test and seismic performance of partial precast concrete segmental bridge column with cast-in-place base", Eng. Struct., 100, 178-188. https://doi.org/10.1016/j.engstruct.2015.05.034.
  7. Kwak, H.G. and Shin, S.K. (2009), "An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges: (1) Introduction to numerical model", Struct. Eng. Mech., 33(2), 215-238. https://doi.org/10.12989/sem.2009.33.2.215.
  8. Lee, H.W., Bames, R.W. and Kim, K.Y. (2003), "A continuity method for bridges constructed with precast prestressed concrete girders", Struct. Eng. Mech., 17(6), 879-898. https://doi.org/10.12989/sem.2004.17.6.879.
  9. Li, C., Hao, H. and Bi, K.M. (2019), "Numerical study on the seismic performance of precast segmental concrete columns under cyclic loading", Eng. Struct., 148, 373-386. https://doi.org/10.1016/j.engstruct.2017.06.062.
  10. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  11. Mantawy, I.M., Thonstad, T., Sanders, D.H. and Stanton, J.F. (2016), "Seismic performance of precast, pretensioned, and cast-in-place bridges: Shake table test comparison", J. Bridge Eng., 21(10), 04016071. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000934.
  12. Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proceedings of IABSE Symposium, 15-22.
  13. Moyo, P., Sibanda, B. and Beushausen, H. (2012), "Modelling and integrity assessment of shear connectors in precast cast-in-situ concrete bridges", Struct. Eng. Mech., 42(1), 55-72. https://doi.org/10.12989/sem.2012.42.1.055.
  14. Park, R. (1989), "Evaluation of ductility of structures and structural assemblages from laboratory testing", Bull. NZ Nat. Soc. Earthq. Eng., 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166.
  15. Saiidi, M.S. and Bush, A. (2006), "Ultimate and fatigue response of shear dominated full-scale pretensioned concrete box girders", Struct. Eng. Mech., 23(4), 353-367. https://doi.org/10.12989/sem.2006.23.4.353.
  16. Shim, C., Chung, C. and Kim, H. (2008), "Experimental evaluation of seismic performance of precast segmental bridge pies with a circular solid section", Eng. Struct., 30(12), 3782-3792. https://doi.org/10.1016/j.engstruct.2008.07.005.
  17. Tin, V.D., Thong, M.P. and Hao, H. (2019), "Effects of steel confinement and shear keys on the impact responses of precast concrete segmental columns", J. Constr. Steel Res., 158, 331-349. https://doi.org/10.1016/j.jcsr.2019.04.008.
  18. Wang, J.Q., Wang, Z., Gao, Y.F. and Zhu, J.Z. (2019), "Review on seismic behavior of precast assembly piers: New material, mew concept, new application", Eng. Mech., 36(3), 1- 23.
  19. Wang, Z., Qu, H., Li, T., Wei, H., Wang, H., Duan, H. and Jiang, H. (2018), "Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones", Eng. Struct., 158, 13-27. https://doi.org/10.1016/j.engstruct.2017.12.035.
  20. Wang, Z., Wang, J.Q., Tang, Y.C. and Gao, Y.F. (2019), "Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge model", J. Bridge Eng., 24(3), 04018124. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001332.
  21. Wang, Z., Wang, J.Q., Zhao, G.T. and Zhang, J. (2020), "Modeling seismic behavior of precast segmental UHPC bridge columns in a simplified method", Bull. Earthq. Eng., 18(7), 3317-3349. https://doi.org/10.1007/s10518-020-00817-z.
  22. Xia, Z.H., Ge, J.P., Lin, Y.Q. and Qiu, F.Q. (2020), "Shake table study on precast segmental concrete double-column piers", Earthq. Eng. Eng. Vib., 19(3), 705-723. https://doi.org/10.1007/s11803-020-0590-x.
  23. Zhang, Q. and Shahria, A.M. (2020), "State-of-the-art review of seismic-resistant precast bridge columns", J. Bridge Eng., 25(10), 03120001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001620.
  24. Zhuo, W.D., Tong, T. and Liu, Z. (2019), "Analytical pushover method and hysteretic modeling of precast segmental bridge piers with high-strength bars based on cyclic loading test", J. Struct. Eng., 145(7), 04019050. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002318.