DOI QR코드

DOI QR Code

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Received : 2022.08.24
  • Accepted : 2023.01.06
  • Published : 2023.02.10

Abstract

The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.

Keywords

References

  1. Agrawal, A.K. and He, W.L. (2002), "A close-form approximation of near-fault ground motion pulses for flexible structures", ASCE Engineering Mechanics Conference, 15, 131-138.
  2. Au, S.K. and Beck, J.L. (2001), "Estimation of small failure probabilities in high dimensions by subset simulation", Prob. Eng. Mech., 16(4), 263-277. https://doi.org/10.1016/S0266-8920(01)00019-4.
  3. Bekdas, G. and Nigdeli, S.M. (2017), "Metaheuristic-based optimization of tuned mass dampers under earthquake excitation by considering soil-structure interaction", Soil Dyn. Earthq. Eng., 92, 443-461. https://doi.org/10.1016/j.soildyn.2016.10.019.
  4. Bekdas, G., Kayabekir, A.E., Nigdeli, S.M. and Toklu, Y.C. (2019), "Transfer function amplitude minimization for structures with tuned mass dampers considering soil-structure interaction", Soil Dyn. Earthq. Eng., 116, 552-562. https://doi.org/10.1016/j.soildyn.2018.10.035.
  5. Bhowmik, K. and Debnath, N. (2021), "Stochastic structural optimization of Multiple Tuned Mass Damper (MTMD) system with uncertain bounded parameters", Adv. Struct. Technol., 381-392. https://doi.org/10.1007/978-981-15-5235-9_28.
  6. Bray, J.D. and Rodriguez-Marek, A. (2004), "Characterization of forward-directivity ground motions in the near-fault region", Soil Dyn. Earthq. Eng., 24(11), 815-828. https://doi.org/10.1016/j.soildyn.2004.05.001
  7. Caicedo, D., Lara-Valencia, L., Blandon, J. and Graciano, C. (2021), "Seismic response of high-rise buildings through metaheuristic-based optimization using tuned mass dampers and tuned mass dampers inerter", J. Build. Eng., 34, 101927. https://doi.org/10.1016/j.jobe.2020.101927.
  8. Chakraborty, S. and Roy, B.K. (2011), "Reliability based optimum design of tuned mass damper in seismic vibration control of structures with bounded uncertain parameters", Prob. Eng. Mech., 26(2), 215-221. https://doi.org/10.1016/j.probengmech.2010.07.007.
  9. Chen, G. and Wu, J. (2001), "Optimal placement of multiple tune mass dampers for seismic structures", J. Struct. Eng., 127(9), 1054-1062. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1054).
  10. Debbarma, R. and Debnath, D. (2013), "Earthquake response control of 3-Story building structures by tuned mass damper", Int. J. Eng. Innov. Technol., 2, 187-192.
  11. Dicleli, M. and Buddaram, S. (2007), "Equivalent linear analysis of seismic-isolated bridges subjected to near-fault ground motions with forward rupture directivity effect", Eng. Struct., 29(1), 21-32. https://doi.org/10.1016/j.engstruct.2006.04.004.
  12. Elias, S., Gill, D., Rupakhety, R. and Olafsson, S. (2021), "Passive vibration control of tall structures with uncertain parameters-A reliability analysis", Recent Adv. Comput. Mech. Simul., 613-622. https://doi.org/10.1007/978-981-15-8138-0-47.
  13. Etedali, S. (2020), "Ranking of design scenarios of TMD for seismically excited structures using TOPSIS", Front. Struct. Civil Eng., 14(6), 1372-1386. https://doi.org/10.1007/s11709-020-0671-y.
  14. Etedali, S. and Mollayi, N. (2018), "Cuckoo search-based least squares support vector machine models for optimum tuning of tuned mass dampers", Int. J. Struct. Stab. Dyn., 18(02), 1850028. https://doi.org/10.1142/S0219455418500281.
  15. Etedali, S. and Rakhshani, H. (2018), "Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations", Alex. Eng. J., 57(4), 3205-3218. https://doi.org/10.1016/j.aej.2018.01.009.
  16. Etedali, S., Akbari, M. and Seifi, M. (2019), "MOCS-based optimum design of TMD and FTMD for tall buildings under near-field earthquakes including SSI effects", Soil Dyn. Earthq. Eng., 119, 36-50. https://doi.org/10.1016/j.soildyn.2018.12.027.
  17. Etedali, S., Bijaem, Z.K., Mollayi, N. and Babaiyan, V. (2021), "Artificial intelligence-based prediction models for optimal design of tuned mass dampers in damped structures subjected to different excitations", Int. J. Struct. Stab. Dyn., 21(9), 2150120. https://doi.org/10.1142/S0219455421501200.
  18. Etedali, S., Seifi, M. and Akbari, M. (2018), "A numerical study on optimal FTMD parameters considering soil-structure interaction effects", Geomech. Eng., 16(5), 527-538. https://doi.org/10.12989/gae.2018.16.5.527.
  19. Farshidianfar, A. and Soheili, S. (2013), "Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction", Soil Dyn. Earthq. Eng., 51, 14-22. https://doi.org/10.1016/j.soildyn.2013.04.002.
  20. FEMA 273 (1997), Seismic Rehabilitation Guidelines, Federal Emergency Management Agency.
  21. He, W.L. and Agrawal, A.K. (2008), "Analytical model of ground motion pulses for the design and assessment of seismic protective systems", J. Struct. Eng., 134(7), 1177-1188. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1177).
  22. Hosseinaei, S., Ghasemi, M.R. and Etedali, S. (2021), "Optimal design of passive and active Control systems in seismic-excited structures using a new modified TLBO", Periodica Polytechnica Civil Eng., 65(1), 37-55. https://doi.org/10.3311/PPci.16507.
  23. Jabary, R.N. and Madabhushi, S.P.G. (2015), "Tuned mass damper effects on the response of multi-storied structures observed in geotechnical centrifuge tests", Soil Dyn. Earthq. Eng., 77, 373-380. https://doi.org/10.1016/j.soildyn.2015.06.013.
  24. Jabary, R.N. and Madabhushi, S.P.G. (2017), "Structure-soil-structure interaction effects on structures retrofitted with tuned mass dampers", Soil Dyn. Earthq. Eng., 100, 301-315. https://doi.org/10.1016/j.soildyn.2017.05.017.
  25. Kaveh, A., Javadi, S.M. and Moghanni, R.M. (2020), "Optimal structural control of tall buildings using tuned mass dampers via chaotic optimization algorithm", Struct., 28, 2704-2713. https://doi.org/10.1016/j.istruc.2020.11.002.
  26. Kayabekir, A.E., Nigdeli, S.M. and Bekdas, G. (2022), "A hybrid metaheuristic method for optimization of active tuned mass dampers", Comput. Aid. Civil Infrastr. Eng., 37(8), 1027-1043. https://doi.org/10.1111/mice.12790.
  27. Keshtegar, B. and Etedali, S. (2018), "Nonlinear mathematical modeling and optimum design of tuned mass dampers using adaptive dynamic harmony search algorithm", Struct. Control Hlth. Monit., 25(7), e2163. https://doi.org/10.1002/stc.2163.
  28. Lara-Valencia, L.A., Caicedo, D. and Valencia-Gonzalez, Y. (2021), "A novel whale optimization algorithm for the design of tuned mass dampers under earthquake excitations", Appl. Sci., 11(13), 6172. https://doi.org/10.3390/app11136172.
  29. Lukkunaprasit, P. and Wanitkorkul, A. (2001), "Inelastic buildings with tuned mass dampers under moderate ground motions from distant earthquakes", Earthq. Eng. Struct. Dyn., 30(4), 537-551. https://doi.org/10.1002/eqe.22.
  30. Marano, G.C., Greco, R. and Sgobba, S. (2010), "A comparison between different robust optimum design approaches: Application to tuned mass dampers", Prob. Eng. Mech., 25(1), 108-118. https://doi.org/1016/j.probengmech.2009.08.004 . 1016/j.probengmech.2009.08.004
  31. Marano, G.C., Greco, R., Trentadue, F. and Chiaia, B. (2007), "Constrained reliability-based optimization of linear tuned mass dampers for seismic control", Int. J. Solid. Struct., 44(22-23), 7370-7388. https://doi.org/10.1016/j.ijsolstr.2007.04.012.
  32. Marano, G.C., Sgobba, S., Greco, R. and Mezzina, M. (2008), "Robust optimum design of tuned mass dampers devices in random vibrations mitigation", J. Sound Vib., 313(3-5), 472-492. https://doi.org/10.1016/j.ijsolstr.2007.04.012 .
  33. Matta, E. (2011), "Performance of tuned mass dampers against near-field earthquakes", Struct. Eng. Mech., 39(5), 621-642. https://doi.org/10.12989/sem.2011.39.5.621
  34. Matta, E. (2013), "Effectiveness of tuned mass dampers against ground motion pulses", J. Struct. Eng., 139(2), 188-198. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000629.
  35. Mavroeidis, G.P. and Papageorgiou, A.S. (2003), "A mathematical representation of near-fault ground motions", Bull. Seismol. Soc. Am., 93(3), 1099-1131. https://doi.org/10.1785/0120020100.
  36. Menun, C. and Fu, Q. (2002), "An analytical model for near-fault ground motions and the response of SDOF systems", Proceedings of the 7th US National Conference on Earthquake Engineering, July.
  37. Oncu-Davas, S. and Alhan, C. (2019), "Reliability of semi-active seismic isolation under near-fault earthquakes", Mech. Syst. Signal Pr., 114, 146-164. https://doi.org/10.1016/j.ymssp.2018.04.045.
  38. Papaioannou, I., Betz, W., Zwirglmaier, K. and Straub, D. (2015), "MCMC algorithms for subset simulation", Prob. Eng. Mech., 41, 89-103. https://doi.org/10.1016/j.probengmech.2015.06.006.
  39. Pinkaew, T., Lukkunaprasit, P. and Chatupote, P. (2003), "Seismic effectiveness of tuned mass dampers for damage reduction of structures", Eng. Struct., 25(1), 39-46. https://doi.org/10.1016/S0141-0296(02)00115-3
  40. Pourzeynali, S., Salimi, S. and Kalesar, H.E. (2013), "Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms", Scientia Iranica, 20(2), 207-221. https://doi.org/10.1016/j.scient.2012.11.015.
  41. Rakhshani, H. and Rahati, A. (2017), "Snap-drift cuckoo search: A novel cuckoo search optimization algorithm", Appl. Soft Comput., 52, 771-794. https://doi.org/10.1016/j.asoc.2016.09.048.
  42. Ramezani, M., Bathaei, A. and Ghorbani-Tanha, A.K. (2018), "Application of artificial neural networks in optimal tuning of tuned mass dampers implemented in high-rise buildings subjected to wind load", Earthq. Eng. Eng. Vib., 17(4), 903-915. https://doi.org/10.1007/s11803-018-0483-4 .
  43. Shahi, M., Sohrabi, M.R. and Etedali, S. (2018), "Seismic control of high-rise buildings equipped with ATMD including soil-structure interaction effects", J. Earthq. Tsunami, 12(03), 1850010. http://doi.org/10.12989/sss.2016.17.2.231.
  44. Shourestani, S., Soltani, F., Ghasemi, M. and Etedali, S. (2018), "SSI effects on seismic behavior of smart base-isolated structures", Geomech. Eng., 14(2), 161-174. https://doi.org/10.12989/gae.2018.14.2.161
  45. Spyrakos, C.C., Maniatakis, C.A. and Koutromanos, I.A. (2009), "Soil-structure interaction effects on base-isolated buildings founded on soil stratum", Eng. Struct., 31(3), 729-737. https://doi.org/10.1016/j.engstruct.2008.10.012.
  46. Yu, H., Gillot, F. and Ichchou, M. (2013), "Reliability based robust design optimization for tuned mass damper in passive vibration control of deterministic/uncertain structures", J. Sound Vib., 332(9), 2222-2238. https://doi.org/10.1016/j.jsv.2012.12.014.
  47. Yucel, M., Bekdas, G., Nigdeli, S.M. and Sevgen, S. (2019), "Estimation of optimum tuned mass damper parameters via machine learning", J. Build. Eng., 26, 100847. https://doi.org/10.1016/j.jobe.2019.100847.