DOI QR코드

DOI QR Code

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University) ;
  • Vahab, Sarfarazi (Department of Mining Engineering, Hamedan University of Technology) ;
  • Hadi, Haeri (Department of Mining Engineering, Higher Education Complex of Zarand) ;
  • Amir Aslan, Naderi (Department of Mining Engineering, Hamedan University of Technology) ;
  • Mohammad Fatehi, Marji (Department of Mining Engineering, Yazd University) ;
  • Fei, Wu (State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University)
  • Received : 2022.09.16
  • Accepted : 2022.12.30
  • Published : 2023.02.10

Abstract

In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).

Keywords

Acknowledgement

This work was financially supported by the Science and Technology Department of Sichuan Province (2023YFH0022), the National Natural Science Foundation of China (52204104), the Open Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control (2011DA105287-FW201905), the Open Fund of Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province (20kfgk01), the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology (SKLGP2021K009), the Sichuan University postdoctoral interdisciplinary Innovation Fund.

References

  1. Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
  2. Akbas, S, (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78. https://doi.org/10.12989/sem.2016.59.3.066.
  3. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012.
  4. Cao, R. and Yao, R. (2020), "Failure mechanism of non-persistent jointed rock-like specimens under uniaxial loading: Laboratory testing", Int. J. Rock Mech. Min. Sci., 132, 99-111. https://doi.org/10.1016/j.ijrmms.2020.104341.
  5. Eberhardt, E., Stead, D., Coggan, J. and Willenberg, H. (2002), "An integrated numerical analysis approach to the Randa rockslide", Proceedings of the First European Conference on Landslides, Prague, Czech Republic, June.
  6. Fan, J. (2019), "Evaluating the material strength from fracture angle under uniaxial loading", Front. Struct. Civil Eng., 13, 288-293. https://doi.org/10.1007/s11709-018-0480-8.
  7. Fujii, Y. and Ishijim, Y. (2004), "Consideration of fracture growth from an inclined slit and inclined initial fracture at the surface of rock and mortar in compression", Int. J. Rock Mech. Min. Sci., 41, 1035-1041. https://doi.org/10.1016/j.ijrmms.2004.04.001.
  8. Gao, D., Zhu, W., Fang, D., Tang, J. and Zhu, H. (2022), "Shear behavior analysis and capacity prediction for the steel fiber reinforced concrete beam with recycled fine aggregate and recycled coarse aggregate", Struct., 37, 44-55. https://doi.org/10.1016/j.istruc.2021.12.075.
  9. Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2004), "Effect of rock bridge continuity and area on shear behavior of joints", 11th Congress of the International Society for Rock Mechanics, Lisbon, Portugal, July.
  10. Ghazvinian, A., Nikudel, M.R. and Sarfarazi., V. (2008), "Determination of sliding path in rock slopes containing coplanar non-persistent open discontinuity", World Appl. Sci. J., 3(4), 577-589.
  11. Golewski, G. (2019a), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.
  12. Gu, X.F., Seidel, J.P. and Haberfield, C.M. (2003), "Direct shear test of sandstone-concrete joints", Int. J. Geomech., 3(1), 21-33. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(21).
  13. Hatzor, Y.H., Arzi, A.A., Zaslavsky, Y. and Shapira, A. (2004), "Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod's Palace, Masada, Israel", Int. J. Rock Mech. Min. Sci., 41(5), 813-832. https://doi.org/10.1016/j.ijrmms.2004.02.002.
  14. Karakus, M., Liu, Y., Zhang, G. and Tang, H. (2016), "A new shear strength model incorporating influence of infill materials for rock joints", Geomech. Geophys. Geo-Energy Geo-Resour., 2(3), 183-193. https://doi.org/10.1007/s40948-016-0032-4.
  15. Lajtai, E.Z. (1969), "Strength of discontinuous rock in direct shearing", Geotechnique, 19(2), 218-233. https://doi.org/10.1680/geot.1969.19.2.218
  16. Le H., Sun S. and Wei J. (2019), "Influence of types of grouting materials on compressive strength and crack behavior of rocklike specimens with single grout-infilled flaw under axial loads", J. Mater. Civil Eng., 31, 1-6. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002554.
  17. Le, H. and Sun, S. (2018), "Effect of grout on mechanical properties and cracking behavior of rock-like specimens containing a single flaw under uniaxial compression", Int. J. Geomech., 18, 1-16. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001225.
  18. Le, H., Sun, S. and Hewa, P. (2019), "Effect of grout in-filling, flaw thickness and inclination angle on strength and failure pattern of rock-like specimens with single flaw", Arab. J. Geosci., 12, 56-66. https://doi.org/10.1007/s12517-019-4860-8.
  19. Li, C., Stephansson, O. and Savilahti, T. (1990), "Behaviour of rock joints and rock bridges in shear testing", Proceedings of the International Symposium on Rock Joints, Loen, Norway, June.
  20. Li, Y. and Zhou, H. (2018), "Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method", Geomech. Eng., 14(3), 232-243. https://doi.org/10.12989/gae.2018.14.3.232.
  21. Liu, X., Liu, Y., Lu, Y. and Kou, M. (2020), "Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints", Struct. Eng. Mech., 74(3), 221-234. https://doi.org/10.12989/sem.2020.74.3.221.
  22. Liu, X.R. and Yang, S.Q. (2019), "Experimental study on the strength and fracture mechanism of sandstone containing elliptical holes and fissures under uniaxial compression", Eng. Fract. Mech., 205, 205-217. https://doi.org/10.1016/j.engfracmech.2018.11.028.
  23. Mari, A., Cladera, A., Bairan, J., Oller, E. and Ribas, C. (2014), "Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads", Front. Struct. Civil Eng., 8, 337-353. https://doi.org/10.1007/s11709-014-0081-0.
  24. Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance Concrete using response surface method", Comput. Concrete, 17(4), 33-39. https://doi.org/10.12989/cac.2016.17.4.033.
  25. Oner E., Sabano B., Uzun Yaylaci E., Adiyaman G., Yaylaci M. and Birinci A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", J. Appl. Math. Mech., 23(2), 45-61. https://doi.org/10.1002/zamm.202100287.
  26. Pathak, H., Singh, A., Singh, I.V. and Yadav, S.K. (2015), "Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM", Front. Struct. Civil Eng., 9, 359-382. https://doi.org/10.1007/s11709-015-0304-z.
  27. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  28. Savilahti, T., Nordlund, E. and Stephansson, O. (1990), "Shear box testing and modeling of joint bridge", Proceedings of International Symposium on Shear Box Testing and Modeling of Joint Bridge Rock Joints, Loen, Norway, June.
  29. Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337.
  30. Shen, B. (1995), "The mechanics of fracture coalescence in compression experimental study and numerical simulation", Eng. Fract. Mech., 51(1), 73-85. https://doi.org/10.1016/0013-7944(94)00201-R.
  31. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739.
  32. Sun, X., Ye, B., Lin, K. and Wang, H. (2022), "Shear performance of 3D printed concrete reinforced with flexible or rigid materials based on direct shear test", J. Build. Eng., 48, 103860. https://doi.org/10.1016/j.jobe.2021.103860.
  33. Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2022), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 1-22. https://doi.org/10.1007/s00419-022-02332-w.
  34. Uzun Yaylaci, E., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  35. Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038.
  36. Wan, W. and Liu, J. (2019), "The effects of the rock bridge ligament angle and the confinement on crack coalescence in rock bridges: An experimental study and discrete element method", Comptes Rendus Mecanique, 347, 490-503. https://doi.org/10.1016/j.crme.2018.12.006.
  37. Wang, X., Yuan, W., Yan, Y. and Zhang, X. (2020), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 259-268. https://doi.org/10.12989/gae.2020.21.3.259.
  38. Wasantha, P.L.P., Ranjith, P.G. and Shao, S.S. (2014), "Energy monitoring and analysis during deformation of bedded sandstone: use of acoustic emission", Ultrasonic., 54(1), 217-226. https://doi.org/10.1016/j.ultras.2013.06.015.
  39. Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3.
  40. Wong, R.H.C., Leung, W.L. and Wang, S.W. (2001), "Shear strength study on rock-like models containing arrayed open joints", The 38th US Symposium on Rock Mechanics (USRMS), Swets & Zeitlinger Lisse, July.
  41. Wu, N., Liang, Z., Li, Y., Qian, X. and Gong, B. (2019), "Effect of confining stress on representative elementary volume of jointed rock masses", Geomech. Eng., 18(6), 627-638. https://doi.org/10.12989/gae.2019.18.6.627.
  42. Yang, S.Q. and Yin, P.F. (2019), "Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole", Int. J. Rock Mech. Min. Sci., 114, 101-121. https://doi.org/10.1016/j.ijrmms.2018.12.017.
  43. Yang, S.Q., Dai, Y.H., Han, L.J. and Jin, Z.Q. (2009), "Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression", Eng. Fract. Mech., 76(12), 1833-1845. https://doi.org/10.1016/j.engfracmech.2009.04.005.
  44. Yang, S.Q., Jiang, Y.Z., Xu, W.Y. and Chen, X.Q. (2008), "Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression", Int. J. Solid. Struct., 45(17), 4796-4819. https://doi.org/10.1016/j.ijsolstr.2008.04.023.
  45. YayIaci, M., YayIaci, E.U., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel Compos. Struct., 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501.
  46. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  47. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  48. Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking process in rocklike material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z.
  49. Zhang, X.P. and Wong, L.N.Y. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1.
  50. Zhao, Y., Zou, R., Ding, T. and Xiao, J. (2021), "Experimental study of the shear behaviour of concrete-grout-concrete joints", J. Build. Eng., 43, 103095, https://doi.org/10.1016/j.jobe.2021.103095.
  51. Zhou, D., Ye, Y., Hu, N., Wang, W. and Wang, X. (2021), "Crack evolution of soft-hard composite layered rock-like specimens with two fissures under uniaxial compression", Front. Struct. Civil Eng., 15(6), 1372-1389. https://doi.org/10.1007/s11709-021-0772-2.
  52. Zhu, Q., Li, D., Han, Z., Li, X. and Zhou, Z. (2019), "Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression", Int. J. Rock Mech. Min. Sci., 115, 33-47. https://doi.org/10.1016/j.ijrmms.2019.01.010.