DOI QR코드

DOI QR Code

Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements

  • Selmi, Abdellatif (Department of Civil Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Ali, Raza (Department of Civil Engineering, University of Engineering and Technology Taxila)
  • Received : 2022.01.01
  • Accepted : 2023.01.10
  • Published : 2023.02.10

Abstract

Limited studies are available on the mathematical estimates of the compressive strength (CS) of glass fiber-embedded polymer (glass-FRP) compressive elements. The present study has endeavored to estimate the CS of glass-FRP normal strength concrete (NSTC) compression elements (glass-FRP-NSTC) employing two various methodologies; mathematical modeling and artificial neural networks (ANNs). The dataset of 288 glass-FRP-NSTC compression elements was constructed from the various testing investigations available in the literature. Diverse equations for CS of glass-FRP-NSTC compression elements suggested in the previous research studies were evaluated employing the constructed dataset to examine their correctness. A new mathematical equation for the CS of glass-FRP-NSTC compression elements was put forwarded employing the procedures of curve-fitting and general regression in MATLAB. The newly suggested ANN equation was calibrated for various hidden layers and neurons to secure the optimized estimates. The suggested equations reported a good correlation among themselves and presented precise estimates compared with the estimates of the equations available in the literature with R2= 0.769, and R2 =0.9702 for the mathematical and ANN equations, respectively. The statistical comparison of diverse factors for the estimates of the projected equations also authenticated their high correctness for apprehending the CS of glass-FRP-NSTC compression elements. A broad parametric examination employing the projected ANN equation was also performed to examine the effect of diverse factors of the glass-FRP-NSTC compression elements.

Keywords

Acknowledgement

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/22808)

References

  1. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2013), "Axial capacity of circular concrete columns reinforced with GFRP bars and spirals", J. Compos. Constr., 18(1), 04013017. https://doi.org/10.1061/(asce)cc.1943-5614.0000438.
  2. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2013), "Stress and axial efficacy of circular concrete columns embedded with CFRP bars and spirals", J. Compos. Constr., 18(2), 04013035. https://doi.org/10.1061/(asce)cc.1943-5614.0000430.
  3. Afifi, M.Z., Mohamed, H.M., Chaallal, O. and Benmokrane, B. (2014), "Confinement equation for concrete columns internally confined with carbon FRP spirals and hoops", J. Struct. Eng., 141(9), 04014219. https://doi.org/10.1061/(asce)st.1943-541x.0001197.
  4. Ahmad, A., Khan, Q.U.Z. and Raza, A. (2020), "Reliability analysis of strength models for CFRP-confined concrete cylinders", Compos. Struct., 244, 112312. https://doi.org/10.1016/j.compstruct.2020.112312.
  5. Ashrafi, H.R., Jalal, M. and Garmsiri, K. (2010), "Estimate of load-displacement curve of concrete embedded by composite fibers (steel and polymeric) employing artificial neural network", Exp. Syst. Appl., 37(12), 7663-7668. https://doi.org/10.1016/j.eswa.2010.04.076.
  6. Basaran, B., Kalkan, I., Bergil, E. and Erdal, E. (2021), "Estimation of the FRP-concrete bond stress with code formulations and machine learning algorithms", Compos. Struct., 268, 113972. https://doi.org/10.1016/j.compstruct.2021.113972.
  7. Benmokrane, B., El-Salakawy, E., El-Ragaby, A. and Lackey, T. (2006), "Designing and testing of concrete bridge decks embedded with glass FRP bars", J. Bridge Eng., 11(2), 217-229. https://doi.org/10.1061/(asce)1084-0702(2006)11:2(217).
  8. Berradia, M., Azab, M., Ahmad, Z., Accouche, O., Raza, A. and Alashker, Y. (2022), "Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models", Struct. Eng. Mech., 83(4), 515-535. https://doi.org/10.12989/sem.2022.83.4.515.
  9. Buckhouse, E.R. (1997), "External flexural reinforcing of existing embedded concrete beams employing bolted steel channels", Master's Theses, 1922-2009.
  10. Canadian Standard Association, C.S.A (2012), Design and Construction of Building Structures with Fibre-Embedded Polymer, CAN/CSA S806-12. Toronto, ON, Canada.
  11. Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047.
  12. Castellano, G. and Fanelli, A.M. (2000), "Factor selection using neural-network models", Neurocomput., 31(1-4), 1-13. https://doi.org/10.1016/S0925-2312(99)00146-0.
  13. Cevik, A. and Cabalar, A.F. (2008), "A genetic-programming-based formulation for the stress enhancement of fiber-embedded-polymer-confined concrete cylinders", J. Appl. Polym. Sci., 110(5), 3087-3095. https://doi.org/10.1002/app.28839.
  14. Cevik, A. and Guzelbey, I.H. (2008), "Neural network modeling of strength enhancement for CFRP confined concrete cylinders", Build. Environ., 43(5), 751-763. https://doi.org/10.1016/j.compositesb.2012.05.044.
  15. Cevik, A., Gogus, M.T., Guzelbey, I.H. and Filiz, H. (2010), "Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders", Adv. Eng. Softw., 41(4), 527-536. https://doi.org/10.1016/j.advengsoft.2009.10.015.
  16. Cladera, A. and Mari, A.R. (2004), "Shear design procedure for embedded normal and high-stress concrete beams employing artificial neural networks. Part II: Beams with stirrups", Eng. Struct., 26(7), 927-936. https://doi.org/10.1016/j.engstruct.2004.02.010.
  17. Cladera, A. and Mari, A.R. (2004), "Shear design procedure for embedded normal and high-stress concrete beams employing artificial neural networks. Part I: Beams without stirrups", Eng. Struct., 26(7), 917-926. https://doi.org/10.1016/j.engstruct.2004.02.011.
  18. Dahmani, L., Khennane, A. and Kaci, S. (2010), "Crack identification in reinforced concrete beams employing ANSYS software", Stress Mater., 42(2), 232-240. https://doi.org/10.1007/s11223-010-9212-6.
  19. Das, M. and Dey, A.K. (2019), "Prediction of bearing capacity of stone columns placed in soft clay employing SVR model", Arab. J. Sci. Eng., 44(5), 4681-4691. https://doi.org/10.1007/s13369-018-3513-7.
  20. De Luca, A., Matta, F. and Nanni, A. (2010), "Efficacy of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load", ACI Struct. J., 107(5), 589. https://doi.org/10.14359/51663912.
  21. Dong, M., Elchalakani, M., Karrech, A., Pham, T.M. and Yang, B. (2019), "Glass fibre-reinforced polymer circular alkali-activated fly ash/slag concrete elements under combined loading", Eng. Struct., 199, 109598. https://doi.org/10.1016/j.engstruct.2019.109598.
  22. Elchalakani, M. and Ma, G. (2017), "Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading", Eng. Struct., 151, 93-104. https://doi.org/10.1016/j.engstruct.2017.08.023.
  23. Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed Ali, M. S. and Yang, B. (2019), "Testing investigation of rectangular air-cured geopolymer concrete columns reinforced with GFRP bars and stirrups", J. Compos. Constr., 23(3), 04019011. https://doi.org/10.1061/(asce)cc.1943-5614.0000938.
  24. Elchalakani, M., Ma, G., Aslani, F. and Duan, W. (2017), "Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading", Mag. Concrete Res., 69(17), 865-877. https://doi.org/10.1680/jmacr.16.00437.
  25. El-Ftooh, K.A., Seleemah, A.A., Atta, A.A. and Taher, S.E.D.F. (2018), "Does a single ANN properly predict pushover response factors of low-, medium-and high-rise infilled RC frames?", Arab. J. Sci. Eng., 43(10), 5517-5539. https://doi.org/10.1007/s13369-018-3195-1.
  26. Elsanadedy, H., Al-Salloum, YA., Abbas, H. and Alsayed, S.H. (2012), "Prediction of strength parameters of FRP-confined concrete", Compos. Part B: Eng., 43(2), 228-239. https://doi.org/10.1016/j.compositesb.2011.08.043.
  27. Elshamandy, M.G., Farghaly, A.S. and Benmokrane, B. (2018), "Testing behavior of glass fiber-reinforced polymer-reinforced concrete columns under lateral cyclic load", ACI Struct. J., 115(2), 337-349. https://doi.org/10.14359/51700985.
  28. Elwan, S.K. and Rashed, A.S. (2011), "Experimental behavior of eccentrically loaded RC short columns strengthened using GFRP wrapping", Struct. Eng. Mech., 39(2), 207-221. https://doi.org/10.12989/sem.2011.39.2.207.
  29. Fahmy, M.F. and Wu, Z. (2010), "Evaluating and proposing models of circular concrete columns confined with various FRP composites", Compos. Part B: Eng., 41(3), 199-213. https://doi.org/10.1016/j.compositesb.2009.12.001.
  30. Gao, K., Xie, H., Li, Z., Zhang, J. and Tu, J. (2021), "Study on eccentric behavior and serviceability performance of slender rectangular concrete columns reinforced with GFRP bars", Compos. Struct., 263, 113680. https://doi.org/10.1016/j.compstruct.2021.113680.
  31. Goyal, A., Pouya, H.S., Ganjian, E. and Claisse, P. (2018), "A review of corrosion and protection of steel in concrete", Arab. J. Sci. Eng., 43(10), 5035-5055. https://doi.org/10.1007/s13369-018-3303-2.
  32. Guo, Z., Zhu, Y., Chen, Y. and Zhao, Y. (2021), "Test on residual ultimate stress of pultruded concrete-filled GFRP tubular short columns after lateral impact", Compos. Struct., 260, 113520. https://doi.org/10.1016/j.compstruct.2020.113520.
  33. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2016), "Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Testing and mathematical investigations", J. Compos. Constr., 21(2), 04016092. https://doi.org/10.1061/(asce)cc.1943-5614.0000748
  34. Hadhood, A., Mohamed, H.M., Benmokrane, B., Nanni, A. and Shield, C.K. (2019), "Assessment of design guidelines of concrete columns reinforced with glass fiber-reinforced polymer bars", ACI Struct. J., 116(4), 193-207. https://doi.org/10.14359/51715663.
  35. Hadhood, A., Mohamed, H.M., Benmokrane, B., Nanni, A. and Shield, C.K. (2019), "Assessment of design guidelines of concrete columns reinforced with glass fiber-reinforced polymer bars", ACI Struct. J., 116(4), 193-207. https://doi.org/10.14359/51715663.
  36. Hadi, M., Karim, H. and Sheikh, M.N. (2016), "Testing investigations on circular concrete columns reinforced with GFRP bars and helices under various loading conditions", J. Compos. Constr., 20(4), 04016009. https://doi.org/10.1061/(asce)cc.1943-5614.0000670.
  37. Hassan, A., Khairallah, F., Mamdouh, H. and Kamal, M. (2018), "Evaluation of self-compacting concrete columns reinforced with steel and FRP bars with various stressening procedures", Struct., 15, 82-93. https://doi.org/10.1016/j.istruc.2018.06.003.
  38. Hodhod, O.A., Hassan, W., Hilal, M.S. and Bahnasawy, H. (2005), "Strength and ductility of biaxially loaded high strength RC short square columns confined with GFRP jackets", Struct. Eng. Mech., 20(6), 727-745. https://doi.org/10.12989/sem.2005.20.6.727.
  39. Huang, L., Yu, T. and Zhang, S.S. (2021), "FRP-confined concrete encased cross-shaped steel columns: Effects of key factors", Compos. Struct., 272, 114252. https://doi.org/10.1016/j.compstruct.2021.114252.
  40. Jiang, K., Han, Q., Bai, Y. and Du, X. (2020), "Data-driven ultimate conditions estimate and stress-strain model for FRP-confined concrete", Compos. Struct., 242, 112094. https://doi.org/10.1016/j.compstruct.2020.112094.
  41. Jiang, T. and Teng, J. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
  42. Kar, S. and Biswal, K. (2020), "Shear strengthening of reinforced concrete T-beams by using fiber-reinforced polymer composites: A data analysis", Arab. J. Sci. Eng., 45(5), 4203-4234. https://doi.org/10.1007/s13369-020-04412-x.
  43. Karim, H., Sheikh, M.N. and Hadi, MNS. (2016), "Axial load-axial deformation behavior of circular concrete columns reinforced with GFRP bars and helices", Constr. Build. Mater., 112, 1147-1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
  44. Khan, H., Rafique, M., Karam, S., Ahmad, K. and Bashir, A. (2014), "Identification of shear cracks in reinforced beams employing finite element method (ANSYS)", Pakistan J. Sci., 66(1), 50.
  45. Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial-flexural interactions of GFRP-CFFT columns with and without reinforcing GFRP bars", J. Compos. Constr., 21(3), 04016109. https://doi.org/10.1061/(asce)cc.1943-5614.0000771.
  46. Khorramian, K. and Sadeghian, P. (2017), "Testing and analytical behavior of short concrete columns reinforced with GFRP bars under eccentric loading", Eng. Struct., 151, 761-773. https://doi.org/10.1016/j.engstruct.2017.08.064.
  47. Krogh, A. and Vedelsby, J. (1995), "Neural network ensembles, cross validation, and active learning", Adv. Neyral Inform. Proc. Syst., 7, 21-238.
  48. LeCun, Y.A., Bottou, L., Orr, G.B. and Muller, K.R. (2012), Efficient Backprop. Neural Networks: Tricks of the Trade, Springer.
  49. Mohamed, H., Afifi, MZ. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced axially with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  50. Mohamed, H.M. and Benmokrane, B. (2013), "Design and efficacy of reinforced concrete water chlorination tank totally reinforced with GFRP bars: Case study", J. Compos. Constr., 18(1), 05013001. https://doi.org/10.1061/(asce)cc.1943-5614.0000429.
  51. Mohamed, H.M. and Benmokrane, B. (2016), "Reinforced concrete beams with and without FRP web reinforcing under pure torsion", J. Bridge Eng., 21(3), 04015070. https://doi.org/10.1061/(asce)be.1943-5592.0000839.
  52. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Efficacy evaluation of concrete columns reinforced axially with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(asce)be.1943-5592.0000590.
  53. Mohamed, H.M., Chaallal, O. and Benmokrane, B. (2014), "Torsional moment capacity and failure mode mechanisms of concrete beams reinforced with carbon FRP bars and stirrups", J. Compos. Constr., 19(2), 04014049. https://doi.org/10.1061/(asce)cc.1943-5614.0000515.
  54. Mozumder, R.A., Roy, B. and Laskar, A.I. (2017), "Support vector regression approach to predict the stress of FRP confined concrete", Arab. J. Sci. Eng., 42(3), 1129-1146. https://doi.org/10.1007/s13369-016-2340-y.
  55. Naderpour, H., Kheyroddin, A. and Amiri, G.G. (2010), "Estimate of FRP-confined compressive strength of concrete employing artificial neural networks", Compos. Struct., 92(12), 2817-2829. https://doi.org/10.1016/j.compstruct.2010.04.008.
  56. Naderpour, H., Nagai, K., Haji, M. and Mirrashid, M. (2019), "Adaptive neuro-fuzzy inference equationing and sensitivity analysis for capacity estimation of fiber-reinforced polymer-stressened circular reinforced concrete columns", Exp. Syst., 36(4), e12410. https://doi.org/10.1111/exsy.12410.
  57. Pantelides, C.P., Gibbons, M.E. and Reaveley, L.D. (2013), "Axial load efficacy of concrete columns confined with GFRP spirals", J. Compos. Constr., 17(3), 305-313. https://doi.org/10.1061/(asce)cc.1943-5614.0000357.
  58. Raza, A. and Ahmad, A. (2020), "Reliability analysis of projected capacity equation for predicting the efficacy of steel-tube concrete columns confined with CFRP sheets", Comput. Concrete, 25(5), 383-400. https://doi.org/10.12989/cac.2020.25.5.383.
  59. Raza, A. and Khan, Q. (2020), "Structural efficacy of GFRP-reinforced circular HFRC columns under concentric and eccentric loading", Arab. J. Sci. Eng., 46(5), 4239-4252. https://doi.org/10.1007/s13369-020-04881-0.
  60. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete columns using CDP model in ABAQUS", Adv. Civil Eng., 2019, Article ID 1745341. https://doi.org/10.1155/2019/1745341.
  61. Raza, A., Khan, Qu, Z. and Ahmad, A. (2020), "Prediction of axial compression stress for FRP-confined concrete columns", KSCE J. Civil Eng., 24(7), 2099-2109. https://doi.org/10.1007/s12205-020-1682-x.
  62. Raza, A., Manalo, A.C., Rafique, U. and AlAjarmeh, O.S. (2021), "Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP bars and spirals", Compos. Struct., 268, 113968. https://doi.org/10.1016/j.compstruct.2021.113968.
  63. Raza, A., Rehman, A., Masood, B. and Hussain, I. (2020), "Finite element modeling and theoretical predictions of FRP-reinforced concrete columns confined with various FRP-tubes", Struct., 26, 626-638. https://doi.org/10.1016/j.istruc.2020.04.033.
  64. Raza, A., Shah, SAR., Khan, AR., Aslam, MA., Khan, TA., Arshad, K., Hussan, S., Sultan, A., Shahzadi, G. and Waseem, M. (2020), "Sustainable FRP-confined symmetric concrete structures: an application testing and numerical validation process for reference data", Appl. Sci., 10(1), 333. https://doi.org/10.3390/app10010333.
  65. Raza, A., Shah, SAR., Khan, MM., Faraz, H., Arshad, H., Farhan, M. and Waseem, M. (2020), "Axial load-carrying capacity of steel tubed concrete short columns confined with advanced FRP composites", Periodica Polytechnica Civil Eng., 64(3), 764-781. https://doi.org/10.3311/PPci.15199.
  66. Saadatmanesh, H., Ehsani, M.R. and Li, M.W. (1994), "Strength and ductility of concrete columns externally reinforced with fiber composite straps", Struct. J., 91(4), 434-447. https://doi.org/10.14359/4151.
  67. Sahin, U. and Bedirhanoglu, I. (2014), "A fuzzy model approach to stress-strain relationship of concrete in compression", Arab. J. Sci. Eng., 39(6), 4515-4527. https://doi.org/10.1007/s13369-014-1170-z.
  68. Samani, A.K. and Attard, M.M. (2012), "A stress-strain model for uniaxial and confined concrete under compression", Eng. Struct., 41, 335-349. https://doi.org/10.1016/j.engstruct.2012.03.027.
  69. Shayanfar, J., Barros, J.A. and Rezazadeh, M. (2021), "Generalized Analysis-oriented equation of FRP confined concrete circular columns", Compos. Struct., 270, 114026. https://doi.org/10.1016/j.compstruct.2021.114026.
  70. Tabatabaei, A., Eslami, A., Mohamed, H.M. and Benmokrane, B. (2018), "Strength of compression lap-spliced GFRP bars in concrete columns with various splice lengths", Constr. Build. Mater., 182, 657-669. https://doi.org/10.1016/j.conbuildmat.2018.06.154.
  71. Tahenni, T., Bouziadi, F., Boulekbache, B. and Amziane, S. (2021), "Testing and nonlinear finite element analysis of shear efficacy of reinforced concrete beams", Struct., 29, 1582-1596. https://doi.org/10.1016/j.istruc.2020.12.043.
  72. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2012), "Concrete columns reinforced axially and transversally with glass fiber-reinforced polymer bars", ACI Struct. J., 109(4), 103-112. https://doi.org/10.14359/51683874.
  73. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2014), "Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcing types and ratios", ACI Struct. J., 111(2), 375-386. https://doi.org/10.14359/51686528.
  74. Utans, J., Moody, J., Rehfuss, S. and Siegelmannt, H. (1995), "Input factor selection for neural networks: Application to predicting the U.S. business cycle", Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr), April. https://doi.org/10.1109/cifer.1995.495263.
  75. Xue, W., Hu, X. and Fang, Z. (2014). "Experimental studies of GFRP reinforced concrete columns under static eccentric loading", 7th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2014), International Institute for FRP in Construction (IIFC), Kingston, ON, Canada.
  76. Yilmaz, M.O. and Bekiroglu, S. (2021), "Prediction of joint shear strain-stress envelope through generalized regression neural networks", Arab. J. Sci. Eng., 46(11), 10819-10833. https://doi.org/10.1007/s13369-021-05565-z.
  77. Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stress-strain model for concrete confined by FRP composites", Compos. Part B: Eng., 38(5-6), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020.
  78. Zadeh, H.J. and Nanni, A. (2012), "Design of RC columns using glass FRP reinforcing", J. Compos. Constr., 17(3), 294-304. https://doi.org/10.1061/(asce)cc.1943-5614.0000354.
  79. Zeng, J.J., Liang, S.D., Li, Y.L., Guo, Y.C. and Shan, G.Y. (2021), "Compressive behavior of FRP-confined elliptical concrete-filled high-stress steel tube columns", Compos. Struct., 266, 113808. https://doi.org/10.1016/j.compstruct.2021.113808.
  80. Zhao, H., Ren, T. and Remennikov, A. (2021), "Behavior of FRP-confined coal reject concrete columns under axial compression", Compos. Struct., 262, 113621. https://doi.org/10.1016/j.compstruct.2021.113621.