DOI QR코드

DOI QR Code

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci (Department of Mechanical Engineering, Kirsehir Ahi Evran University) ;
  • Surkay D., Akbarov (Department of Mechanical Engineering, Yildiz Technical University)
  • 투고 : 2021.06.14
  • 심사 : 2023.01.06
  • 발행 : 2023.01.25

초록

The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.

키워드

참고문헌

  1. Akaydin, H.D. Elvin, N. and Andreoupoulos, Y. (2010), "Harvesting from highly unsteady fluid flows using piezoelectric materials", J. Intel. Mater. Syst. Struct., 21, 1263-1278. https://doi.org/10.1177/1045389X103663171. 
  2. Akbarov S.D. and Ismailov M.I. (2016b), "Frequency response of a pre-stressed metal elastic plate under compressible viscous fluid loading", Appl. Comput. Math., 15(2), 172-188. 
  3. Akbarov S.D. and Ismailov M.I. (2018), "The influence of the rheological parameters of a hydro-viscoelastic system consisting of a viscoelastic plate, viscous fluid and rigid wall on the frequency response of this system", J. Vib. Control, 24(7), 1341-1363. https://doi.org/10.1177/1077546316660029. 
  4. Akbarov, S.D. (2015), Dynamics of Pre-strained Bi-material Elastic Systems: Linearized Three-dimensional Approach, Springer, New York, USA. 
  5. Akbarov, S.D. (2018), "Forced vibration of the hydro-viscoelastic and elastic systems consisting of the viscoelastic or elastic plate, compressible viscous fluid and rigid wall: A review", Appl. Comput. Math., 17(3), 221-245. 
  6. Akbarov, S.D. and Huseynova, T.V. (2019), "Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall", Couple. Syst. Mech., 8(3), 199-218. https://doi.org/10.12989/csm.2019.8.3.199. 
  7. Akbarov, S.D. and Ismailov, M.I. (2016a), "Dynamics of the oscillating moving load acting on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid and rigid wall", Struct. Eng. Mech., 59(3), 403-430. http://doi.org/10.12989/sem.2016.59.3.403. 
  8. Akbarov, S.D. and Ismailov, M.I. (2017), "The forced vibration of the system consisting of an elastic plate, compressible viscous fluid and rigid wall", J. Vib. Control, 23(11), 1809-1827. https://doi.org/10.1177/1077546315601299. 
  9. Amabili, M. (1996), "Effect of finite fluid depth on the hydroelastic vibrations of circular and annular plates", J. Sound Vib., 193, 909-925. https://doi.org/10.1006/jsvi.1996.0322. 
  10. Amabili, M. and Kwak, M.K. (1996), "Free vibrations of circular plates coupled with liquids: Revising the Lamb problem", J. Fluid. Struct., 7, 743-761. https://doi.org/10.1006/jfls.1996.0051. 
  11. Amini, Y., Emdad, H. and Farid, M. (2016), "Fluid-structure interaction analysis of a piezoelectric flexible plate in a cavity filled with fluid", Scientia Iranica B, 23(2), 559-565. https://doi.org/10.24200/SCI.2016.3843. 
  12. Athanassoulis, G.A. and Mamis, K.I. (2012), "An onshore hydro/piezo/electric system and its application to energy harvesting from sea waves", The 2012 World Congress on Advances in Civil, Environmental and Materials Research (ACEM' 12), Seoul, Korea, August. 
  13. Bagno, A.M. (2015), "The dispersion spectrum of wave process in a system consisting of an ideal fluid layer and compressible elastic layer", Int. Appl. Mech., 51(6), 52-60. https://doi.org/10.1007/s10778-015-0721-7. 
  14. Bagno, A.M. and Guz, A.N. (1997), "Elastic waves in prestressed bodies interacting with fluid (Survey)", Int. Appl. Mech., 33(6), 435-465. https://doi.org/10.1007/BF02700652. 
  15. Bagno, A.M., Guz, A.N. and Shchuruk, G.I. (1994), "Influence of fluid viscosity on waves in an initially deformed compressible elastic layer interacting with a fluid medium", Int. Appl. Mech., 30(9), 643-649. https://doi.org/10.1007/BF00847075.
  16. Belkourchia, Y., Bakhti, H. and Azrar, L. (2018), "Numerical simulation of FSI model for energy harvesting from ocean waves and beams with piezoelectric material". 6th International Renewable and Sustainable Energy Conference (IRSEC), December. 
  17. Cho, J.Y., Choi, J.Y., Jeong, S.W., Ahn, J.H., Hwang, W.S., Yoo, H.H., & Sung, T.H. (2017), "Design of hydro electromagnetic and piezoelectric energy harvesters for a smart water meter system", Sensor. Actuators A: Phys., 261(1), 261-267. http://doi.org/10.1016/j.sna.2017.05.018. 
  18. Dehsaraji, M.L., Saidi, A.R. and Mohammadi, M. (2020), "Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory", Struct. Eng. Mech., 73(3), 256-269. http://doi.org/10.12989/sem.2020.73.3.256. 
  19. Elvin, N. and Erturk, A. (2013), Advances in Energy Harvesting Methods, Springer Science & Business Media. 
  20. Guz, A.N. (2009), Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publishers. 
  21. Guz, A.N., Zhuk, A.P. and Bagno, A.M. (2016), "Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (Review)", Int. Appl. Mech., 52(5), 449-507. https://doi.org/10.1007/s10778-016-0770-6. 
  22. Huang, Y.H. and Hsu, H.T. (2016), "Solid-liquid coupled vibration characteristics of piezoelectric hydroacoustic devices", Sensor. Actuator. A: Phys., 238, 177-195. http://doi.org/10.1016/j.sna.2015.12.010. 
  23. Huang, Y.H., Lin, Y.C., Liao, C.Y. and Jhuang, K.L. (2020). "Theoretical and numerical investigations on resonant characteristics of two piezoelectric plates coupled with a finite fluid field", Arch. Appl. Mech., 90, 2775-2798. https://doi.org/10.1007/s00419-020-01749-5 
  24. Jeong, K.H. and Kim, K.J. (2005), "Hydroelastic vibration of a circular plate submerged in a bounded compressible fluid", J. Sound Vib., 283, 153-172. https://doi.org/10.1016/j.jsv.2004.04.029. 
  25. Kozlovsky, Y. (2009), "Vibration of plates in contact with viscous fluid: Extension of Lamb's model", J. Sound Vib., 326, 332-339. https://doi.org/10.1016/j.jsv.2009.04.031. 
  26. Kurt, I., Akbarov, S.D. and Sezer, S. (2016), "The influence of the initial stresses on Lamb wave dispersion in pre-stressed PZT/Metal/PZT sandwich plates", Struct. Eng. Mech., 58(2), 347-378. http://doi.org/10.12989/sem.2016.58.2.347 
  27. Kuznetsova, I.E., Zaitsev, B.D., Borodina, I.A., Kolesov, V.V., Sknarya, A.I., Petrova, N.G. and Nosov, A.V. (2011), "Study of the hydroacoustic emitter based on the antisymmetric lamb wave in a piezoelectric ceramic plate", J. Commun. Technol. Electron., 56(11), 1382-1386. https://doi.org/10.1134/S1064226911100160. 
  28. Kwak, M.K. (1997), "Hydroelastic vibration of circular plates (fourier-bessel series approach)", J. Sound Vib., 201, 293-303. https://doi.org/10.1006/jsvi.1996.0775. 
  29. Kwak, M.K. and Han. S.-B. (2000), "Effect of fluid depth on the hydroelastic vibration of free-edge circular plate", J. Sound Vib., 230(1), 171-125. https://doi.org/10.1006/jsvi.1999.2608. 
  30. Lamb, H. (1921), "Axisymmetric vibration of circular plates in contact with water", Proc. R. Soc. (London) A, 98, 205-216. 
  31. McLachlan, N.W. (1932), "The accession to inertia of flexible discs vibrating in a fluid", Proc. Phys. Soc. (London), 44, 546-555.  https://doi.org/10.1088/0959-5309/44/5/303
  32. Renzi, E. (2016), "Hydro-electromechanical modelling of a piezoelectric wave energy converter", Proc. R. Soc. London. Ser. A, Math. Phys. Sci., 472(2195), 20160715. http://doi.org/10.1098/rspa.2016.0715. 
  33. Sharapov, V., Zhanna, S. and Kunickaya, L. (2014), Piezo-Electric Electro-Acoustic Transducers, Springer, New York, USA. 
  34. Sorokin, S.V. and Chubinskij, A.V. (2008), "On the role of fluid viscosity in wave propagation in elastic plates under heavy fluid loading", J. Sound Vib., 311, 1020-1038. https://doi.org/10.1016/j.jsv.2007.10.001. 
  35. Tang, D.M. and Dowell, E.H. (2018), "Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate", J. Fluid. Struct., 76, 14-36. https://doi.org/10.1016/j.jfluidstructs.2017.09.007. 
  36. Trentadu, F., Quaranta, G., Maruccio, C. and Marano, G.C. (2019), "Energy harvesting from piezoelectric strips attached to systems under random vibrations", Smart Struct. Syst., 24(3), 333-343. https://doi.org/10.12989/sss.2019.24.3.333. 
  37. Yang, J. (2005), An Introduction to the Theory of Piezoelectricity, Springer, Berlin. 
  38. Zakaria, H.A. and Loon, C.M. (2018), "The application of piezoelectric sensor as energy harvester from small-scale hydropower", E3S Web Conf., 65, 05024. https://doi.org/10.1051/e3sconf/20186505024. 
  39. Zhang, P., Qi, C., Fang, H. and Sun, X. (2020), "Bending and free vibration analysis of laminated piezoelectric composite plates". Struct. Eng. Mech., 75(6), 747-769. http://doi.org/10.12989/sem.2020.75.6.747.