DOI QR코드

DOI QR Code

Comparative study on the bending of exponential and sigmoidal sandwich beams under thermal conditions

  • Aman, Garg (Department of Multidisciplinary Engineering, The NorthCap University) ;
  • Mohamed-Ouejdi, Belarbi (Laboratoire de Genie Energetique et Materiaux, LGEM, Faculte de la Science et de lo Technologie, Universite de Biskra) ;
  • Li, Li (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology) ;
  • Hanuman D., Chalak (Department of Civil Engineering, National Institute of Technology Kurukshetra) ;
  • Abdelouahed, Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2022.04.08
  • 심사 : 2023.01.03
  • 발행 : 2023.01.25

초록

The bending analysis of sandwich functionally graded (FG) beams under temperature circumstances is performed in this article utilizing Navier's solution-based parabolic shear deformation theory. For the first time, a comparative study has been carried out between the exponential and sigmoidal sandwich FGM beams under thermal conditions. During this investigation, temperature-dependent material characteristics are postulated. Both symmetric and unsymmetric sandwich examples have been studied. The effect of gradation law, gradation coefficient, and thickness scheme on beam behavior has been thoroughly investigated. Three possible temperature combinations at the top and bottom surfaces of the beam are also investigated. Beams with a higher proportion of ceramic to metal are shown to be more resistant to thermal stresses than beams with a higher proportion of metal.

키워드

과제정보

The research described in this paper received no financial grant or support in any form.

참고문헌

  1. Ahmadi, H. and Foroutan, K. (2021), "Nonlinear buckling analysis of FGP shallow spherical shells under thermomechanical condition", Steel Compos. Struct., 40(4), 555-570. https://doi.org/10.12989/scs.2021.40.4.555.
  2. Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
  3. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
  4. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
  5. Bai, Y., Suhatril, M., Cao, Y., Forooghi, A. and Assilzadeh, H. (20211), "Hygro-thermo-magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory", Eng. Comput., 38, 2509-2526. https://doi.org/10.1007/s00366-020-01218-1.
  6. Beg, M.S. and Yasin M.Y. (2021), "Bending, free and forced vibration of functionally graded deep curved beams in thermal environment using an efficient layerwise theory", Mech. Mater., 159, 103919. https://doi.org/10.1016/j.mechmat.2021.103919.
  7. Benaberrahmane, I., Mekerbi, M., Bouiadjra, R.B., Benyoucef, S., Selim, M.M., Tounsi, A. and Hussain, M. (2021), "Analytical evaluation of frequencies of bidirectional FG thick beams in thermal environment and resting on different foundation", Struct. Eng. Mech., 80(4), 365-375. https://doi.org/10.12989/sem.2021.80.4.365.
  8. Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B, 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
  9. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
  10. Eghbali, M. and Hosseini, S.A. (2022), "Influences of magnetic environment and two moving loads on lateral and axial displacement of sandwich graphene-reinforced copper-based composite beams with soft porous core", J. Vib. Control, 10775463221135030. https://doi.org/10.1177/10775463221135030.
  11. Eghbali, M., Hosseini, S.A. and Hamidi, B.A. (2022a), "Mantari's higher-order shear deformation theory of sandwich beam with CNTRC face layers with porous core under thermal loading", Int. J. Struct. Stabl. Dyn., 22(16), 2250181. https://doi.org/10.1142/S0219455422501814.
  12. Eghbali, M., Hosseini, S.A. and Pourseifi, M. (2022b), "An dynamical evaluation of size-dependent weakened nano-beam based on the nonlocal strain gradient theory", J. Strain Anal. Eng. Des., 03093247221135210. https://doi.org/10.1177/03093247221135210.
  13. Ezzat, M.A. (2021), "Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii", Steel Compos. Struct., 38(4), 447-462. https://doi.org/10.12989/scs.2021.38.4.447.
  14. Garg, A. and Chalak, H.D. (2019), "A review on analysis of laminated composite and sandwich structures under hygrothermal conditions", Thin Wall. Struct., 142, 205-226. https://doi.org/10.1016/j.tws.2019.05.005.
  15. Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021b), "A review of the analysis of sandwich FGM structures", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
  16. Garg, A., Chalak H.D. and Chakrabarti, A. (2020), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
  17. Garg, A., Chalak, H.D., Belarbi M.O., Chakrabarti, A. and Houari M.S.A. (2021a), "Finite element-based free vibration analysis of power-law, exponential and sigmoidal functionally graded sandwich beams", J. Inst. Eng. India Ser. C, 102(5), 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.
  18. Garg, A., Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2022a), "Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams", Mech. Adv. Mater. Struct., 29(25), 4523-4545. https://doi.org/10.1080/15376494.2021.1931993.
  19. Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2022b), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Arch. Comput. Meth. Eng., 29, 2237-2270. https://doi.org/10.1007/s11831-021-09652-0.
  20. Garg, A., Mukhopadhyay, T., Chalak, H.D., Belarbi, M.O., Li, L. and Sahoo, R. (2022c), "Multiscale bending and free vibration analyses of functionally graded graphene platelet/fiber composite beams", Steel Compos. Struct., 44(5), 707-720. https://doi.org/10.12989/scs.2022.44.5.707.
  21. Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
  22. Hashemi, R., Mirzaei, M. and Adlparvar, M.R. (2021), "On thermally induced instability of FG-CNTRC cylindrical panels", Adv. Nano Res., 10(1), 43-57. https://doi.org/10.12989/anr.2021.10.1.043.
  23. Hosseini, S.A., Hamidi, B.A., and Ghaffari, S.S. (2022), "On combination of all small-scale theories for nonlinear free vibrations and thermal buckling of nanobeams under thermal loading", Wave. Random Complex Media, https://doi.org/10.1080/17455030.2022.2076956.
  24. Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019.
  25. Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2021), "Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via Homotopy Perturbation Method", Eng. Comput., 37, 561-577. https://doi.org/10.1007/s00366-019-00841-x.
  26. Khandelwal, R.P., Chakrabarti, A. and Bhargava, P. (2019), "Efficient 2D thermo-mechanical analysis of composites and sandwich laminates", Mech. Adv. Mater. Struct., 26(6), 526-538. https://doi.org/10.1080/15376494.2017.1410897.
  27. Khosravi, R., Teymourtash, A.R., Fard, M.P., Rabiei, S. and Bahiraei, M. (2021), "Numerical study and optimization of thermohydraulic characteristics of a graphene-platinum nanofluid in finned annulus using genetic algorithm combined with decision-making technique", Eng. Comput., 37, 2473-2491. https://doi.org/10.1007/s00366-020-01178-6.
  28. Li, S., Su, H. and Cheng, C. (2009), "Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment", Appl. Math. Mech., 30, 969-982. https://doi.org/10.1007/s10483-009-0803-7.
  29. Li, Y.S., Liu, B.L. and Zhang, J.J. (2021), "Hygro-thermal buckling of porous FG nanobeams considering surface effects", Struct. Eng. Mech., 79(3), 359-371. https://doi.org/10.12989/sem.2021.79.3.359.
  30. Nikrad, S.F., Kanellopoulos, A., Bodaghi, M., Chen, Z.T. and Pourasghar, A. (2021), "Large deformation behavior of functionally graded porous curved beams in thermal environment", Arch. Appl. Mech., 91, 2255-2278. https://doi.org/10.1007/s00419-021-01882-9.
  31. Saeedzadeh, H., Hosseini, S.A., Hamidi, B.A., Saeedzadeh, M. and Refaeinejad, V. (2022), "Thermoelastic vibrations of microbeam resonator under pulsed laser heating", Wave. Random Complex Media, 1-28. https://doi.org/10.1080/17455030.2022.2085889.
  32. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  33. Sahoo, B., Mehar, K., Sahoo, B., Sharma, N. and Panda, S.K. (2021a), "Thermal frequency analysis of FG sandwich structure under variable temperature loading", Struct. Eng. Mech., 77(1), 57-74. https://doi.org/10.12989/sem.2021.77.1.057.
  34. Sahoo, B., Mehar, K., Sahoo, B., Sharma, N. and Panda, S.K. (2021b), "Thermal post-buckling analysis of graded sandwich curved structures under variable thermal loadings", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01514-4.
  35. Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: A review", Mech. Adv. Mater. Struct., 26(21), 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
  36. Singh, P.P. and Azam, M.S. (2021), "Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method", Adv. Nano Res., 10(1), 25-42. https://doi.org/10.12989/anr.2021.10.1.025.
  37. Tounsi, A., Houari, M.S.A., Benyoucef, S., Bedia and E.A.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009. 
  38. Tran, T.T., Nguyen, N.H., Do, T.V., Minh, P.V. and Duc, N.D. (2021), "Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory", J. Sandw. Struct. Mater., 23(3), 906-930. https://doi.org/10.1177/1099636219849268.
  39. Wei, G. and Tahouneh, V. (2021), "Temperature dependent buckling analysis of graded porous plate reinforced with graphene platelets", Steel Compos. Struct., 39(3), 275-290. https://doi.org/10.12989/scs.2021.39.3.275.
  40. Youzera, H., Meftah, S.A., Selim, M.M. and Tounsi, A. (2021), "Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2021.1979140.
  41. Zhang, D.G. (2013), "Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Compos. Struct., 100, 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024.