DOI QR코드

DOI QR Code

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao (School of Civil Engineering, Chongqing University) ;
  • Yupeng, Wang (School of Civil Engineering, Chongqing University)
  • Received : 2022.09.08
  • Accepted : 2023.01.03
  • Published : 2023.01.25

Abstract

Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

Keywords

References

  1. Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct., 85(7-8), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004.
  2. Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31-32), 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001.
  3. Bathe, K.J. and Noh, G. (2012), "Insight into an implicit time integration scheme for structural dynamics", Comput. Struct., 98-99, 1-6. https://doi.org/10.1016/j.compstruc.2012.01.009.
  4. Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247x(71)90110-7
  5. Bui, Q.V. (2003), "Energy dissipative time finite elements for classical mechanics", Comput. Meth. Appl. Mech. Eng., 192(26-27), 2925-2947. https://doi.org/10.1016/S0045-7825(03)00310-4.
  6. Choi, B., Bathe, K.J. and Noh, G. (2022), "Time splitting ratio in the ρ∞-Bathe time integration method for higher-order accuracy in structural dynamics and heat transfer", Comput. Struct., 270, 106814. https://doi.org/10.1016/j.compstruc.2022.106814.
  7. Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, Computers & Structures, Inc., Berkeley, CA, USA.
  8. Fung, T.C. (1998), "Complex-time-step Newmark methods with controllable numerical dissipation", Int. J. Numer. Meth. Eng., 41(1), 65-93. https://doi.org/10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F.
  9. Fung, T.C. (2000), "Unconditionally stable time-step-integration algorithms based on Hamilton's principle", AIAA J., 38(8), 1453-1464. https://doi.org/10.2514/2.1122.
  10. Hilber, H.M. (1976), "Analysis and design of numerical integration methods in structural dynamics", Report No. EERC 76-29, Earthquake Engineering Research Center, University of California, Berkeley, Richmond, CA, USA.
  11. Hulbert, G.M. (1992), "Time finite element methods for structural dynamics", Int. J. Numer. Meth. Eng., 33(2), 307-331. https://doi.org/10.1002/nme.1620330206.
  12. Idesman, A.V. (2007), "A new high-order accurate continuous Galerkin method for linear elastodynamics problems", Comput. Mech., 40(2), 261-279. https://doi.org/10.1007/s00466-006-0096-z.
  13. Kim, J. and Kim, D. (2016), "Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action", J. Mech. Sci. Technol., 30(9), 4185-4194. https://doi.org/10.1007/s12206-016-0830-1.
  14. Kim, W. and Reddy, J.N. (2021), "A novel family of two-stage implicit time integration schemes for structural dynamics", Int. J. Comput. Meth., 18(8), 2150021. https://doi.org/10.1142/S0219876221500213.
  15. Li, X.D. and Wiberg, N.E. (1996), "Structural dynamic analysis by a time-discontinuous Galerkin finite element method", Int. J. Numer. Meth. Eng., 39(12), 2131-2152. https://doi.org/10.1002/(SICI)1097-0207(19960630)39:12<2131::AID-NME947>3.0.CO;2-Z.
  16. Liao, M. (2022), "Weak-form quadrature element method: A comparative review of different formulations and its comprehensive assessment", Arch. Comput. Meth. Eng., 1-13. https://doi.org/10.1007/s11831-022-09799-4.
  17. Malakiyeh, M.M., Shojaee, S. and Javaran, S.H. (2018), "Development of a direct time integration method based on Bezier curve and 5th-order Bernstein basis function", Comput. Struct., 194, 15-31. https://doi.org/10.1016/j.compstruc.2017.08.015.
  18. Mancuso, M. and Ubertini, F. (2003), "An efficient integration procedure for linear dynamics based on a time discontinuous Galerkin formulation", Comput. Mech., 32(3), 154-168. https://doi.org/10.1007/s00466-003-0469-5.
  19. Mancuso, M. and Ubertini, F. (2006), "An efficient time discontinuous Galerkin procedure for non-linear structural dynamics", Comput. Meth. Appl. Mech. Eng., 195(44-47), 6391-6406. https://doi.org/10.1016/j.cma.2006.01.004.
  20. Mergel, J.C., Sauer, R.A. and Ober-Blobaum, S. (2017), "C-1-continuous space-time discretization based on Hamilton's law of varying action", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 97(4), 433-457. https://doi.org/10.1002/zamm.201600062.
  21. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  22. Noh, G. and Bathe, K.J. (2018), "Further insights into an implicit time integration scheme for structural dynamics", Comput. Struct., 202, 15-24. https://doi.org/10.1016/j.compstruc.2018.02.007.
  23. Noh, G. and Bathe, K.J. (2019), "The Bathe time integration method with controllable spectral radius: The ρ∞-Bathe method", Comput. Struct., 212, 299-310. https://doi.org/10.1016/j.compstruc.2018.11.001.
  24. Qin, J. and Zhong, H. (2021), "A weak form temporal quadrature element formulation for linear structural dynamics", Eng. Comput., 38(10), 3904-3931. https://doi.org/10.1108/EC-07-2020-0377.
  25. Qin, J. and Zhong, H. (2022), "A Galerkin time quadrature element formulation for linear structural dynamics", Appl. Math. Comput., 413, 126609. https://doi.org/10.1016/j.amc.2021.126609.
  26. Sheng, G., Fung, T.C. and Fan, S.C. (1998), "Parametrized formulations of Hamilton's law for numerical solutions of dynamic problems: Part II. Time finite element approximation", Comput. Mech., 21(6), 449-460. https://doi.org/10.1007/s004660050324.
  27. Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer, London, UK.
  28. Shu, C.W. (2014), "Discontinuous Galerkin method for time-dependent problems: Survey and recent developments", Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, Springer, Switzerland.
  29. Wang, L. and Zhong, H. (2017), "A time finite element method for structural dynamics", Appl. Math. Model., 41, 445-461. https://doi.org/10.1016/j.apm.2016.09.017.
  30. Wang, Y., Tamma, K.K., Xue, T., Maxam, D. and Qin, G. (2021), "Generalized Petrov-Galerkin time finite element weighted residual methodology for designing high-order unconditionally stable algorithms with controllable numerical dissipation", J. Comput. Phys., 430, 110097. https://doi.org/10.1016/j.jcp.2020.110097.
  31. Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y. and Fang, D.N. (2017), "A novel sub-step composite implicit time integration scheme for structural dynamics", Comput. Struct., 182, 176-186. https://doi.org/10.1016/j.compstruc.2016.11.018.
  32. Yasamani, K. and Mohammadzadeh, S. (2017), "A novel two sub-stepping implicit time integration algorithm for structural dynamics", Earthq. Struct., 13(3), 279-288. https://doi.org/10.12989/eas.2017.13.3.279.
  33. Zhong, H. and Yu, T. (2009), "A weak form quadrature element method for plane elasticity problems", Appl. Math. Model., 33(10), 3801-3814. https://doi.org/10.1016/j.apm.2008.12.007.