References
- Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct., 85(7-8), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004.
- Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31-32), 2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001.
- Bathe, K.J. and Noh, G. (2012), "Insight into an implicit time integration scheme for structural dynamics", Comput. Struct., 98-99, 1-6. https://doi.org/10.1016/j.compstruc.2012.01.009.
- Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247x(71)90110-7
- Bui, Q.V. (2003), "Energy dissipative time finite elements for classical mechanics", Comput. Meth. Appl. Mech. Eng., 192(26-27), 2925-2947. https://doi.org/10.1016/S0045-7825(03)00310-4.
- Choi, B., Bathe, K.J. and Noh, G. (2022), "Time splitting ratio in the ρ∞-Bathe time integration method for higher-order accuracy in structural dynamics and heat transfer", Comput. Struct., 270, 106814. https://doi.org/10.1016/j.compstruc.2022.106814.
- Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, Computers & Structures, Inc., Berkeley, CA, USA.
- Fung, T.C. (1998), "Complex-time-step Newmark methods with controllable numerical dissipation", Int. J. Numer. Meth. Eng., 41(1), 65-93. https://doi.org/10.1002/(SICI)1097-0207(19980115)41:1<65::AID-NME270>3.0.CO;2-F.
- Fung, T.C. (2000), "Unconditionally stable time-step-integration algorithms based on Hamilton's principle", AIAA J., 38(8), 1453-1464. https://doi.org/10.2514/2.1122.
- Hilber, H.M. (1976), "Analysis and design of numerical integration methods in structural dynamics", Report No. EERC 76-29, Earthquake Engineering Research Center, University of California, Berkeley, Richmond, CA, USA.
- Hulbert, G.M. (1992), "Time finite element methods for structural dynamics", Int. J. Numer. Meth. Eng., 33(2), 307-331. https://doi.org/10.1002/nme.1620330206.
- Idesman, A.V. (2007), "A new high-order accurate continuous Galerkin method for linear elastodynamics problems", Comput. Mech., 40(2), 261-279. https://doi.org/10.1007/s00466-006-0096-z.
- Kim, J. and Kim, D. (2016), "Quadratic temporal finite element method for linear elastic structural dynamics based on mixed convolved action", J. Mech. Sci. Technol., 30(9), 4185-4194. https://doi.org/10.1007/s12206-016-0830-1.
- Kim, W. and Reddy, J.N. (2021), "A novel family of two-stage implicit time integration schemes for structural dynamics", Int. J. Comput. Meth., 18(8), 2150021. https://doi.org/10.1142/S0219876221500213.
- Li, X.D. and Wiberg, N.E. (1996), "Structural dynamic analysis by a time-discontinuous Galerkin finite element method", Int. J. Numer. Meth. Eng., 39(12), 2131-2152. https://doi.org/10.1002/(SICI)1097-0207(19960630)39:12<2131::AID-NME947>3.0.CO;2-Z.
- Liao, M. (2022), "Weak-form quadrature element method: A comparative review of different formulations and its comprehensive assessment", Arch. Comput. Meth. Eng., 1-13. https://doi.org/10.1007/s11831-022-09799-4.
- Malakiyeh, M.M., Shojaee, S. and Javaran, S.H. (2018), "Development of a direct time integration method based on Bezier curve and 5th-order Bernstein basis function", Comput. Struct., 194, 15-31. https://doi.org/10.1016/j.compstruc.2017.08.015.
- Mancuso, M. and Ubertini, F. (2003), "An efficient integration procedure for linear dynamics based on a time discontinuous Galerkin formulation", Comput. Mech., 32(3), 154-168. https://doi.org/10.1007/s00466-003-0469-5.
- Mancuso, M. and Ubertini, F. (2006), "An efficient time discontinuous Galerkin procedure for non-linear structural dynamics", Comput. Meth. Appl. Mech. Eng., 195(44-47), 6391-6406. https://doi.org/10.1016/j.cma.2006.01.004.
- Mergel, J.C., Sauer, R.A. and Ober-Blobaum, S. (2017), "C-1-continuous space-time discretization based on Hamilton's law of varying action", ZAMM-J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik, 97(4), 433-457. https://doi.org/10.1002/zamm.201600062.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
- Noh, G. and Bathe, K.J. (2018), "Further insights into an implicit time integration scheme for structural dynamics", Comput. Struct., 202, 15-24. https://doi.org/10.1016/j.compstruc.2018.02.007.
- Noh, G. and Bathe, K.J. (2019), "The Bathe time integration method with controllable spectral radius: The ρ∞-Bathe method", Comput. Struct., 212, 299-310. https://doi.org/10.1016/j.compstruc.2018.11.001.
- Qin, J. and Zhong, H. (2021), "A weak form temporal quadrature element formulation for linear structural dynamics", Eng. Comput., 38(10), 3904-3931. https://doi.org/10.1108/EC-07-2020-0377.
- Qin, J. and Zhong, H. (2022), "A Galerkin time quadrature element formulation for linear structural dynamics", Appl. Math. Comput., 413, 126609. https://doi.org/10.1016/j.amc.2021.126609.
- Sheng, G., Fung, T.C. and Fan, S.C. (1998), "Parametrized formulations of Hamilton's law for numerical solutions of dynamic problems: Part II. Time finite element approximation", Comput. Mech., 21(6), 449-460. https://doi.org/10.1007/s004660050324.
- Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer, London, UK.
- Shu, C.W. (2014), "Discontinuous Galerkin method for time-dependent problems: Survey and recent developments", Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, Springer, Switzerland.
- Wang, L. and Zhong, H. (2017), "A time finite element method for structural dynamics", Appl. Math. Model., 41, 445-461. https://doi.org/10.1016/j.apm.2016.09.017.
- Wang, Y., Tamma, K.K., Xue, T., Maxam, D. and Qin, G. (2021), "Generalized Petrov-Galerkin time finite element weighted residual methodology for designing high-order unconditionally stable algorithms with controllable numerical dissipation", J. Comput. Phys., 430, 110097. https://doi.org/10.1016/j.jcp.2020.110097.
- Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y. and Fang, D.N. (2017), "A novel sub-step composite implicit time integration scheme for structural dynamics", Comput. Struct., 182, 176-186. https://doi.org/10.1016/j.compstruc.2016.11.018.
- Yasamani, K. and Mohammadzadeh, S. (2017), "A novel two sub-stepping implicit time integration algorithm for structural dynamics", Earthq. Struct., 13(3), 279-288. https://doi.org/10.12989/eas.2017.13.3.279.
- Zhong, H. and Yu, T. (2009), "A weak form quadrature element method for plane elasticity problems", Appl. Math. Model., 33(10), 3801-3814. https://doi.org/10.1016/j.apm.2008.12.007.