DOI QR코드

DOI QR Code

Power spectral density method performance in detecting damages by chloride attack on coastal RC bridge

  • Mehrdad, Hadizadeh-Bazaz (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia) ;
  • Ignacio J., Navarro (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia) ;
  • Victor, Yepes (Department of Construction Engineering, Institute of Concrete Science and Technology (ICITECH), Universitat Politecnica de Valencia)
  • Received : 2022.09.24
  • Accepted : 2022.12.28
  • Published : 2023.01.25

Abstract

The deterioration caused by chloride penetration and carbonation plays a significant role in a concrete structure in a marine environment. The chloride corrosion in some marine concrete structures is invisible but can be dangerous in a sudden collapse. Therefore, as a novelty, this research investigates the ability of a non-destructive damage detection method named the Power Spectral Density (PSD) to diagnose damages caused only by chloride ions in concrete structures. Furthermore, the accuracy of this method in estimating the amount of annual damage caused by chloride in various parts and positions exposed to seawater was investigated. For this purpose, the RC Arosa bridge in Spain, which connects the island to the mainland via seawater, was numerically modeled and analyzed. As the first step, each element's bridge position was calculated, along with the chloride corrosion percentage in the reinforcements. The next step predicted the existence, location, and timing of damage to the entire concrete part of the bridge based on the amount of rebar corrosion each year. The PSD method was used to monitor the annual loss of reinforcement cross-section area, changes in dynamic characteristics such as stiffness and mass, and each year of the bridge structure's life using sensitivity equations and the linear least squares algorithm. This study showed that using different approaches to the PSD method based on rebar chloride corrosion and assuming 10% errors in software analysis can help predict the location and almost exact amount of damage zones over time.

Keywords

Acknowledgement

Grant PID2020-117056RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe".

References

  1. Aloisio, A., Alaggio, R. and Fragiacomo, M. (2020), "Time-domain identification of the elastic modulus of simply supported box girders under moving loads: Method and fullscale validation", Eng. Struct., 215, 110619. https://doi.org/10.1016/j.engstruct.2020.110619. 
  2. Angst, U.M., Geiker, M.R., Alonso, M.C., Polder, R., Isgor, O.B., Elsener, B., ... & Sagues, A. (2019), "The effect of the steel-concrete interface on chloride-induced corrosion initiation in concrete: A critical review by RILEM TC 262-SCI", Mater. Struct., 52(4), 1-25. https://doi.org/10.1617/s11527-019-1387-0. 
  3. Aquino, R.E., Barbosh, M. and Sadhu, A. (2021), "Comparison of time-domain and time-frequency-domain system identification methods on tall building data with noise", Dyn. Civil Struct., 2, 179-184. https://doi.org/10.1007/978-3-030-47634-2_20. 
  4. Arefi, S.L. and Gholizad, A. (2020), "Damage identification of structures by reduction of dynamic matrices using the modified modal strain energy method", Struct. Monit. Maint., 7(2), 125-147. https://doi.org/10.12989/smm.2020.7.2.125. 
  5. Arora, V. (2011), "Comparative study of finite element model updating methods", J. Vib. Control, 17(13), 2023-2039. https://doi.org/10.1177/1077546310395967. 
  6. Barbosh, M., Singh, P. and Sadhu, A. (2020), "Empirical mode decomposition and its variants: A review with applications in structural health monitoring", Smart Mater. Struct., 29(9), 093001. https://orcid.org/0000-0001-5685-7087. 
  7. Bayat, M., Ahmadi, H.R. and Mahdavi, N. (2019), "Application of power spectral density function for damage diagnosis of bridge piers", Struct. Eng. Mech., 71(1), 57-63. https://doi.org/10.12989/sem.2019.71.1.057. 
  8. Bendat, J.S. and Piersol, A.G. (1980), Engineering Applications of Correlation and Spectral Analysis, New York. 
  9. Carbonell, A., Gonzalez-Vidosa, F. and Yepes, V. (2011), "Design of reinforced concrete road vaults by heuristic optimization", Adv. Eng. Softw., 42(4), 151-159. https://doi.org/10.1016/j.advengsoft.2011.01.002. 
  10. Crank, J. (2004), The Mathematics of Diffusion-Appendix A Solution of Fick's Second Law, Oxford University Press, Oxford, UK. 
  11. Dessi, D. and Camerlengo, G. (2015), "Damage identification techniques via modal curvature analysis: Overview and comparison", Mech. Syst. Signal Pr., 52, 181-205. https://doi.org/10.1016/j.ymssp.2014.05.031. 
  12. Ekolu, S.O. (2020), "Model for natural carbonation prediction (NCP): Practical application worldwide to real life functioning concrete structures", Eng. Struct., 224, 111126. https://doi.org/10.1016/j.engstruct.2020.111126. 
  13. Esfandiari, A., Bakhtiari-Nejad, F., Rahai, A. and Sanayei, M. (2009), "Structural model updating using frequency response function and quasi-linear sensitivity equation", J. Sound Vib., 326(3-5), 557-573. https://doi.org/10.1016/j.jsv.2009.07.001. 
  14. Ganguli, R. (2020), Modal Curvature Based Damage Detection. In Structural Health Monitoring, Springer, Singapore. 
  15. Gao, D.Y., Yao, W.X., Wen, W.D. and Huang, J. (2021), "Equivalent spectral method to estimate the fatigue life of composite laminates under random vibration loadings", Mech. Compos. Mater., 57(1), 101-114. https://doi.org/10.1007/s11029-021-09937-2. 
  16. Garcia-Segura, T., Penades-Pla, V. and Yepes, V. (2018), "Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty", J. Clean. Prod., 202, 904-915. https://doi.org/10.1016/j.jclepro.2018.08.177. 
  17. Gonzalez, J.L., Aguilera, F.P. and Garcia, F.R. (2013), "Proyecto de rehabilitacion del puente de la Isla de Arosa", Hormig. Acero., 270, 75-89. 
  18. Goyal, A., Pouya, H.S., Ganjian, E. and Claisse, P. (2018), "A review of corrosion and protection of steel in concrete", Arab. J. Sci. Eng., 43(10), 5035-5055. https://doi.org/10.1007/s13369-018-3303-2. 
  19. Gunawan, F.E. (2019), "Reliability of the power spectral density method in predicting structural integrity", Int. J. Innov. Comput., Inform. Control, 15(5), 1717-1727. https://doi.org/10.24507/ijicic.15.05.1717. 
  20. Hadizadeh-Bazaz, M., Navarro, I.J and Yepes, V. (2022), "Performance comparison of structural damage detection methods based on frequency response function and power spectral density", DYNA Ingenieria e Industria, 97(5), 493-500. https://doi.org/10.6036/10504. 
  21. Hajkova, K., Smilauer, V., Jendele, L. and Cervenka, J. (2018), "Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability", Eng. Struct., 174, 768-777. https://doi.org/10.1016/j.engstruct.2018.08.006. 
  22. Hou, L., Peng, Y., Xu, R., Zhang, X., Huang, T. and Chen, D. (2021), "Corrosion behavior and flexural performance of reinforced SFRC beams under sustained loading and chloride attack", Eng. Struct., 242, 112553. https://doi.org/10.1016/j.engstruct.2021.112553. 
  23. Hou, R., Xia, Y. and Zhou, X. (2018), "Structural damage detection based on l1 regularization using natural frequencies and mode shapes", Struct Control Hlth. Monit., 25(3), e2107. https://doi.org/10.1002/stc.2107. 
  24. Khan, M.U., Ahmad, S. and Al-Gahtani, H.J. (2017), "Chloride-induced corrosion of steel in concrete: An overview on chloride diffusion and prediction of corrosion initiation time", Int. J. Corros, 2017, Article ID 5819202. https://doi.org/10.1155/2017/5819202. 
  25. Khan, M.W., Akmal Din, N. and Ul Haq, R. (2020), "Damage detection in a fixed-fixed beam using natural frequency changes", Vibroeng. Procedia, 30, 38-43. https://doi.org/10.21595/vp.2019.21081. 
  26. Khosravan, A., Asgarian, B. and Shokrgozar, H.R. (2021), "Improved modal strain energy decomposition method for damage detection of offshore platforms using data of sensors above the water level", Ocean. Eng., 219, 108337. https://doi.org/10.1016/j.oceaneng.2020.108337. 
  27. Li, J.T., Zhu, X.Q. and Samali, B. (2020), "Bridge operational modal identification using sparse blind source separation", ACMSM25, Springer, Singapore. 
  28. Najafabadi, A.A., Daneshjoo, F. and Bayat, M. (2017), "A novel index for damage detection of deck and dynamic behavior of horizontally curved bridges under moving load", J. Vibroeng., 19(7), 5421-5433. https://doi.org/10.21595/jve.2017.19370. 
  29. Navarro, I.J., Marti, J.V. and Yepes, V. (2019), "Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective", Environ. Impact. Assess. Rev., 74, 23-34. https://doi.org/10.1016/j.eiar.2018.10.001. 
  30. Navarro, I.J., Yepes, V. and Marti, J.V. (2018a), "Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides", Sustain., 10(3), 845. https://doi.org/10.3390/su10030845. 
  31. Navarro, I.J., Yepes, V. and Marti, J.V. (2018b), "Social life cycle assessment of concrete bridge decks exposed to aggressive environments", Environ. Impact. Assess. Rev., 72, 50-63. https://doi.org/10.1016/j.eiar.2018.05.003. 
  32. Navarro, I.J., Yepes, V., Marti, J.V. and Gonzalez-Vidosa, F. (2018c), "Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks", J. Clean. Prod., 196, 698-713. https://doi.org/10.1016/j.jclepro.2018.06.110. 
  33. Nilsson, A. and Liu, B. (2015), "Frequency domain", Vibro-Acoust., 1, 31-66. https://doi.org/10.1007/978-3-662-47934-6. 
  34. Niu, Z. (2020), "Frequency response-based structural damage detection using Gibbs sampler", J. Sound Vib., 470, 115160. https://doi.org/10.1016/j.jsv.2019.115160. 
  35. Pedram, M., Esfandiari, A. and Khedmati, M. R. (2017), "Damage detection by a FE model updating method using power spectral density: Numerical and experimental investigation", J. Sound Vib., 397, 51-76. https://doi.org/10.1016/j.jsv.2017.02.052. 
  36. Penades-Pla, V., Garcia-Segura, T. and Yepes, V. (2019), "Accelerated optimization method for low-embodied energy concrete box-girder bridge design", Eng. Struct., 179, 556-565. https://doi.org/10.1016/j.engstruct.2018.11.015. 
  37. Perez, M.A., Font-More, J. and Fernandez-Esmerats, J. (2021), "Structural damage assessment in lattice towers based on a novel frequency domain-based correlation approach", Eng. Struct., 226, 111329. https://doi.org/10.1016/j.engstruct.2020.111329. 
  38. Perez-Fadon Martinez, S. (1985), "Puente a la Isla de Arosa", Hormigon y Acero, 36(157). 
  39. Perez-Fadon Martinez., S (1986), "Puente sobre la Ria de Arosa", Rev Obras Publicas, 1-16. 
  40. Pooya, S.M.H. and Massumi, A. (2021), "A novel and efficient method for damage detection in beam-like structures solely based on damaged structure data and using mode shape curvature estimation", Appl. Math. Model., 91, 670-694. https://doi.org/10.1016/j.apm.2020.09.012. 
  41. Rahmatalla, S., Eun, H.C. and Lee, E.T. (2012), "Damage detection from the variation of parameter matrices estimated by incomplete FRF data", Smart Struct. Syst., 9(1), 55-70. https://doi.org/10.12989/sss.2012.9.1.055. 
  42. Rathod, H. and Gupta, R. (2019), "Sub-surface simulated damage detection using Non-Destructive Testing Techniques in reinforced-concrete slabs", Constr. Build. Mater., 215, 754-764. https://doi.org/10.1016/j.conbuildmat.2019.04.223. 
  43. Ronchei, C., Vantadori, S., Carpinteri, A., Iturrioz, I., Rodrigues, R.I., Scorza, D. and Zanichelli, A. (2021), "A frequency-domain approach for damage detection in welded structures", Fatig. Fract. Eng. Mater. Struct., 44(4), 1134-1148. https://doi.org/10.1111/ffe.13419. 
  44. Seyedpoor, S.M., Ahmadi, A. and Pahnabi, N. (2019), "Structural damage detection using time domain responses and an optimization method", Invers. Prob. Sci. Eng., 27(5), 669-688. https://doi.org/10.1080/17415977.2018.1505884. 
  45. Shekhar, S., Ghosh, J. and Padgett, J.E. (2018), "Seismic life-cycle cost analysis of ageing highway bridges under chloride exposure conditions: Modelling and recommendations", Struct. Infrastr. Eng., 14(7), 941-966. https://doi.org/10.1080/15732479.2018.1437639. 
  46. Silik, A., Noori, M., Altabey, W.A., Ghiasi, R. and Wu, Z. (2021), "Analytic wavelet selection for time-frequency analysis of big data form civil structure monitoring", International Workshop on Civil Structural Health Monitoring, March. https://doi.org/10.1007/978-3-030-74258-4_29. 
  47. Sobhani, J. and Ramezanianpour, A.A. (2007), "Chloride-induced corrosion of RC structures", Asian J. Civil Eng., 8(5), 531-547. 
  48. Spanish Ministry of Public Works (2008), EHE-08 Instruccion del Hormigon Estructural. 
  49. Sun, B., Xiao, R.C., Ruan, W.D. and Wang, P.B. (2020), "Corrosion-induced cracking fragility of RC bridge with improved concrete carbonation and steel reinforcement corrosion models", Eng. Struct., 208, 110313. https://doi.org/10.1016/j.engstruct.2020.110313. 
  50. Tang, F., Chen, G. and Brow, R.K. (2016), "Chloride-induced corrosion mechanism and rate of enamel-and epoxy-coated deformed steel bars embedded in mortar", Cement Concrete Res., 82, 58-73. https://doi.org/10.1016/j.cemconres.2015.12.015. 
  51. Tran, K.T., Nguyen, T.D., Hiltunen, D.R., Stokoe, K. and Menq, F. (2020), "3D full-waveform inversion in time-frequency domain: Field data application", J. Appl. Geophy., 178, 104078. https://doi.org/10.1016/j.jappgeo.2020.104078. 
  52. Tuutti, K. (1982), "Corrosion of steel in concrete", Cement-och betonginst, Swedish Cement and Concrete Research Institute, Stockholm, Sweden. Report No 4-82. 
  53. Wang, Y. (2021), "Adaptive finite element algorithm for damage detection of non-uniform Euler-Bernoulli beams with multiple cracks based on natural frequencies", Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling Springer, Singapore. 
  54. Wu, Z., Zhang, Z., Wu, J., Liang, J., Ge, J., Liu, X. and Fang, G. (2022), "A new time-frequency domain simulation method for damage accumulation and life prediction of composite thin-wall structures under random cyclic loadings", Compos. Struct., 281, 114999. https://doi.org/10.1016/j.compstruct.2021.114999. 
  55. Xu, W., Zhu, W., Cao, M., Wu, H. and Zhu, R. (2020), "A novel damage index for damage detection and localization of plate-type structures using twist derivatives of laser-measured mode shapes", J. Sound Vib., 481, 115448. https://doi.org/10.1016/j.jsv.2020.115448. 
  56. Yang, Y., Zhang, Y. and Tan, X. (2021), "Review on vibration-based structural health monitoring techniques and technical codes", Symmetry, 13(11), 1998. https://doi.org/10.3390/sym13111998. 
  57. Yu, H., Wang, B., Xia, C., Gao, Z. and Li, Y. (2021), "Efficient non-stationary random vibration analysis of vehicle-bridge system based on an improved explicit time-domain method", Eng. Struct., 231, 111786. https://doi.org/10.1016/j.engstruct.2020.111786. 
  58. Zhang, C.L., Chen, W.K., Mu, S., Savija, B. and Liu, Q.F. (2021), "Numerical investigation of external sulfate attack and its effect on chloride binding and diffusion in concrete", Constr Build Mater., 285, 122806. https://doi.org/10.1016/j.conbuildmat.2021.122806. 
  59. Zhang, D., Zeng, Y., Fang, M. and Jin, W. (2019), "Service life prediction of precast concrete structures exposed to chloride environment", Adv. Civil Eng., 2019, Article ID 3216328. https://doi.org/10.1155/2019/3216328. 
  60. Zheng, X.W., Li, H.N. and Gardoni, P. (2021), "Life-cycle probabilistic seismic risk assessment of high-rise buildings considering carbonation induced deterioration", Eng. Struct., 231, 111752. https://doi.org/10.1016/j.engstruct.2020.111752. 
  61. Zheng, Z.D., Lu, Z.R., Chen, W.H. and Liu, J.K. (2015), "Structural damage identification based on power spectral density sensitivity analysis of dynamic responses", Comput. Struct., 146, 176-184. https://doi.org/10.1016/j.compstruc.2014.10.011.